
Prudent Design Principles
for Information Flow Control

Iulia Bastys Frank Piessens Andrei Sabelfeld



Security designer



??
?

?
New appl ication
domain to secure

Security designer



noninterference
TINI

TSNI

PSNI

PINI

epistemic

quantitative

weak secrecy

expl icit secrecy
observable secrecy

timing-sensitive

Which security
characterization?

New appl ication
domain to secure

Security designer



noninterference
TINI

TSNI

PSNI

PINI

epistemic

quantitative

weak secrecy

expl icit secrecy
observable secrecy

timing-sensitive

Which enforcement
mechanism?

static

dynamic

hybrid

flow sensitive

flow insensitive

language-independent

language-dependent

pure data flows
control flow dependencies

Which security
characterization?

New appl ication
domain to secure

Security designer



Security expertSecurity designer

What should I
do?



Security expertSecurity designer

?



Security expertSecurity designer

Yeah.. .



Security expertSecurity designer

Accepted at PLAS'1 8!



Security expertSecurity designer

Accepted at PLAS'1 8!

What does it
say?



JSFlow FlowFox

• information flow tracker for

JavaScript

• ECMA/262 v.5 support

jsflow.net

• web browser with information

flow control

• based on secure multi-execution

distrinet.cs.kuleuven.be/software/

FlowFox/

h h

l l

h h

l

d

l l



Which security
characterization?

???

Principle 1
Attacker-driven security

Security characterizations benefit from directly
connecting to a behavioral attacker model, expressing
(un)desirable behaviors in terms ofsystem events that
attackers can observe and trigger. Define

security based on
the attacker's
capabilities!



Progress-sensitive
noninterference

Progress-insensitive
noninterference

P
ri
n
ci
pl
e
1
|A
tt
ac
k
er
-d
ri
ve
n
se
cu
ri
ty

• security condition that prevents

information leakage via progress

channels:

• pairwise execution in low

equivalent environments results

the same sequences of output,

before possibly both diverging

• security condition that ignores

such channels:

• the observable behavior of the

program in different low

equivalent environments is

independent of secrets modulo

progress



i = 0;

while (i < Number.MAX_VALUE) {

print(i);

if (i == secret) {

while (true) { }

}

i = i + 1;

}

P
ri
n
ci
pl
e
1
|A
tt
ac
k
er
-d
ri
ve
n
se
cu
ri
ty

loops forever

output trace:
0

1

.

.

.

secret ­ 1



i = 0;

while (i < Number.MAX_VALUE) {

print(i);

if (i == secret) {

while (true) { }

}

i = i + 1;

}

P
ri
n
ci
pl
e
1
|A
tt
ac
k
er
-d
ri
ve
n
se
cu
ri
ty

Can the attacker observe intermediate outputs?
• YES => Progress-sensitive insecure
• NO => Progress-insensitive secure (accepted by JSFlow)

loops forever

output trace:
0

1

.

.

.

secret ­ 1



Principle 2
Trust-aware security enforcement

Security enforcement benefits from explicit trust
assumptions, making clear the boundary between
trusted and untrusted computing base and guiding
the enforcement design in accord. Choose

the EM based on
trust to code!

???

Which
enforcement
mechanism?



P
ri
n
ci
pl
e
2
|T
ru
st
-a
w
ar
e
se
cu
ri
ty
en
fo
rc
em
en
t

l = true;

k = true;

if (h) { l = false; }

if (l) { k = false; }

print(42);

h = true

l = true

k = true

l = false

k = true

42

h = false

l = true

k = true

l = true

k = false

42



P
ri
n
ci
pl
e
2
|T
ru
st
-a
w
ar
e
se
cu
ri
ty
en
fo
rc
em
en
t

I s the code trusted?
• YES => accepted by taint tracking
• NO => blocked by JSFlow when h = true

l = true;

k = true;

if (h) { l = false; }

if (l) { k = false; }

print(42);

h = true

l = true

k = true

l = false

k = true

42

h = false

l = true

k = true

l = true

k = false

42

JSFlow execution



noninterference
TINI

TSNI

PSNI

PINI

epistemic

quantitative

weak secrecy

expl icit secrecy
observable secrecy

timing-sensitive

Which enforcement
mechanism?

static

dynamic

hybrid

flow sensitive

flow insensitive

language-independent

language-dependent

pure data flows
control flow dependencies

Which security
characterization?

New appl ication
domain to secure

Security designer



From enforcement for untrusted code.. .

• Information flow control

• Secure multi-execution

• Blackbox mitigation

• Observable tracking

• Taint tracking

.. . to trusted

Relation
between the two

principles

Verification conditions

• Compositional

• Invariants

• Unwiding conditions

• . . .

From attacker-driven security. . .

• Noninterference

• Epistemic

• Quantitative

• Declassification

• Termination-insensitiv

• Progress-insensitive

• Observable secrecy

• Weak/expl icit secrecy

.. . to soundiness

p
e
rm

issive
n
e
ss

se
cu

rity

Systematization in
the paper



Principle 3
Separation ofpolicy annotations

and code

Security policy annotations and code benefit from
clear separation, especially when the policy is trusted
and code is untrusted.

Separate
the security policy
from the code!

???



Dimensions of
declassification

what

• specifies what partial information
about a secret is released
• e.g., parity of secret

where

• specifies where in a system
information is released
• e.g. via declassify statements

when

• specifies when information
should be released
• e.g., only after a certain time

by whom

• specifies who controls
information release in a
computing system P

ri
n
ci
pl
e
3
|S
ep
ar
at
io
n
o
f
po
li
cy
an
n
o
ta
ti
o
n
s
an
d
co
d
e



P
ri
n
ci
pl
e
3
|S
ep
ar
at
io
n
o
f
po
li
cy
an
n
o
ta
ti
o
n
s
an
d
co
d
e

guess = lbl(getUserInput());

result = declassify(guess == pwd);

• untrusted code => result = declassify(pwd);

• strengthen with other dimensions: what, when, by whom
• JSFlow accepts both (only where dimension)

JSFlow construct:
defines secret data



Principle 4
Language independence

Language-independent security conditions benefit
from abstracting away from the constructs ofthe
underlying language. Language-independent
enforcement benefits from simplicity and reuse. Make

the security condition
and EM language�

independent!???



P
ri
n
ci
pl
e
4
|L
an
gu
ag
e-
in
d
ep
en
d
en
ce

High run:
h = true

l = true

k = true

l = false

k = true

42

Low run:
h = false

l = true

k = true

l = true

k = false

42

l = true;

k = true;

if (h) { l = false; }

if (l) { k = false; }

print(42);



P
ri
n
ci
pl
e
4
|L
an
gu
ag
e-
in
d
ep
en
d
en
cel = true;

k = true;

if (h) { l = false; }

if (l) { k = false; }

print(42);

FlowFox execution

• Execution blocked by JSFlow when h = true

• Execution accepted by FlowFox: output 42 always produced

macroflows between
sources and sinks

microflows between
language construcs

High run:
h = true

l = true

k = true

l = false

k = true

42

Low run:
h = false

l = true

k = true

l = true

k = false

42



Principle 5
Justified abstraction

The level ofabstraction in the security model benefits
from reflecting attacker capabilities.

Reflect
attacker capabilities

in the attacker
model!???



P
ri
n
ci
pl
e
5
|J
us
ti
fi
ed
ab
st
ra
ct
io
n

h = true

h' = h1

h' = h1

h = false

h' = h2

h' = h1

if (h) {

h' = h1;

}

else {

h' = h2;

}

h' = h1;



P
ri
n
ci
pl
e
5
|J
us
ti
fi
ed
ab
st
ra
ct
io
n

if (h) {

h' = h1;

}

else {

h' = h2;

}

h' = h1;

Can the attacker time the execution?
• YES => Attacker learns h: if h = true then h1 in the cache
• NO => Execution accepted by JSFlow (disregards timing)

h = true

h' = h1

h' = h1

h = false

h' = h2

h' = h1



Principle 6
Permissiveness

Enforcement for untrusted code particularly benefits
from reducing false negatives (soundness), while
enforcement for trusted code particularly benefits
from reducing false positives (high permissiveness).

Provide
different coverage
based on code

trustiness!???



P
ri
n
ci
pl
e
6
|P
er
m
is
si
ve
n
es
s

l = true;

k = true;

if (h) { l = false; }

if (l) { k = false; }

print(42);

h = true

l = true

k = true

l = false

k = true

42

h = false

l = true

k = true

l = true

k = false

42

• false positive for JSFlow when h = true

• accepted by taint trackers



Thank you!
1 . Attacker�
driven security

2. Trust�aware
security
enforcement

3. Separation
of policy
annotations
and code

4. Language
independence

5. Justified
abstraction

6. Permissi�
veness



> Static enforcement mechanisms:
Andrei Sabelfeld and Andrew Myers. Language-based information-flow security. In IEEE Journal

on Selected Areas in Communications 21 , (2003).

> Dynamic techniques:
Gurvan Le Guernic. 2007. Confidential ity Enforcement Using Dynamic Information Flow

Analyses. Ph.D. Dissertation. Kansas State University. http://tel.archives­ouvertes.fr/tel­

00198621/fr/.

> Dynamic taint analysis and symbolic execution:
Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. 201 0. Al l You Ever Wanted to

Know about Dynamic Taint Analysis and Forward Symbolic Execution (but Might Have Been

Afraid to Ask). In S&P 201 0.

> JavaScript security pol icies and their enforcement:
Natal i ia Bielova. Survey on JavaScript security pol icies and their enforcement mechanisms in a

web browser. In Journal of Log. Algebr. Program, 201 3 .

> Information flow techniques based on abstract interpretation:
I sabel la Mastroeni. Abstract interpretation-based approaches to Security - A Survey on Abstract

Non-Interference and its Chal lenging Applications. arXiv preprint arXiv:1 309.51 31 1 29 (201 3).




