Prudent Design Principles

for Information Flow Control

[ulia Bastys Frank Piessens Andrei Sabelfeld

CHALMERS KU LEUVEN|

i

Security designer

—— — New application
~— 1 domain to secure

Security designer

Which security
characterization?

TINI
PSNI

noninterference L
| quantitative

observable secrecy i
TSN explicit secrecy

epistemic timing-sensitive

weak secrecy
>
(@)
o0

—— — New application
\/ ~— 1 domain to secure

Security designer

Which security
characterization?

TINI
PSNI

noninterference .
NI quantitative

observable secrecy i
TSN explicit secrecy

epistemic timing-sensitive

weak secrecy
>
(@)
o0

—— — New application
- ~—_ | domain to secure

language-dependent

dynamic .
y . flow sensitive
control flow dependencies

flow insensitive pure data flows

hybrid
language-independent
Which enforcement
mechanism?

static

5

Security designer

What should |

|

Security designer

do?

Security expert

|

Security designer

Prudent Engineering Practice
for Cryptographic Protocols

Martin Abadi*

Abstract

We present principles for the design of crypto-
graphic protocols. The principles are neither
necessary nor sufficient for correctness. They are
however helpful, in that adherence to them would
have avoided a considerable number of published
errors.

Our principles are informal guidelines. They
complement formal methods, but do not assume
them. In order to demonstrate the actual ap-
plicability of these guidelines, we discuss some
instructive examples from the literature.

1 Introduction

It has been evident for a number of years that
cryptographic protocols, as used in distributed
systems for authentication and related purposes,
are prone to design errors of every kind. A con
siderable body of literature has come into be-
ing in which various formalisms are proposed
for investigating and analyzing protocols to see
whether they contain various kinds of blunders.
(Liebl's bibliography [11] contains references to
protacols and formalisms.) Although sometimes
useful, these formalisms do not of themselves
suggest design rules; they are not directly bene-
ficial in seeing how to avoid trouble

atiarc.dec.com. Digital Equipment Corporation,
Systems Research Center, 130 Lytton Ave,, Palo Alte,
California 94301, USA
' rmndicl cam acuk. University of Cambridge, Com-
uter Laboratory, New Museums Site, Pembroke St.,
Cambridge CB1 3QG, UK

1063.7105/94 303,00 © 1994 [EEE

Roger Needham!

We present principles for the design of crypto-
graphic protocols. The principles are not neces-
sary for correctness, nor are they sufficient. They
are however helpful, in that adherence to them
would have contributed to the simplicity of pro-
tocols and avoided a considerable number of pub-
lished confusions and mistakes,

We arrived at our principles by noticing some
common features among protocols that are diffi-
cult to analyze. If these features are avoided, it
becomes less necessary to resort to formal tools—
and also easier to do o if there is good reason
to. The principles themselves are informal guide-
lines, and useful independently of any logic.

Weillustrate the principles with examples. We
draw our examples from the published literature,
in order to demonstrate the actual applicability
of our guidelines, Some of the oddities and er-
rors that we analyze here have been documented
previously (in particular, in [4]). Other examples
are new: protocols by Denning and Sacco [6], Lu
and Sundareshan (12], Varadharajan, Allen, an
Black [29], and Woo and Lam [32). We bel
they are all instructive

Generally, we choose examples from the au-
thentication literature, but the principles are ap-
plicable elsewhere, for example to electronic-cash
protocols (e.g., [15]). We focus on traditional
cryptography, and on protocols of the sort com-
monly implemented with the DES (18] and the
RSA (26] algorithms. In particular, we do not
consider the subtleties of interactive schemes for
signatures {e.g, [7]). Moreover, we do not discuss
the choice of cryptographic mechanisms with ad-
equate protection properties, the correct imple-
mentation of eryptographic primitives, ot their

Security expert

Security designer

Prudent Engineering Practice
for Cryptographic Protocols

Martin Abadi*

Abstract

We present principles for the design of crypto-
graphic protocols. The principles are neither
necessary nor sufficient for correctness. They are
however helpful, in that adherence to them would
have avoided a considerable number of published
errors

Our principles are informal guidelines. They
complement formal methods, but do not assume
them. In order to demonstrate the actual ap-
icability of these guidelines, we discuss some
instructive examples from the literature.

1 Introduction

It has been evident for a number of years that
cryptographic protocols, as used in distributed
systems for authentication and related purposes,
are prone to design errors of every kind. A con
siderable body of literature has come into be-
ing in which various formalisms are proposed
for investigating and analyzing protocols to see
whether they contain various kinds of blunders.
(Liebl's bibliography [11] contains references to
protacols and formalisms.) Although sometimes
useful, these formalisms do not of themselves
suggest design rules; they are not directly bene-
ficial in seeing how to avoid trouble

atiarc.dec.com. Digital Equipment Corporation,
Systems Research Center, 130 Lytton Ave,, Palo Alte,
California 94301, USA
' rmndicl cam acuk. University of Cambridge, Com-
uter Laboratory, New Museums Site, Pembroke St.,
Cambridge CB1 3QG, UK

1063.7105/94 303,00 © 1994 [EEE

Roger Needham!

We present principles for the design of crypto-
graphic protocols. The principles are not neces-
sary for correctness, nor are they sufficient. They
are however helpful, in that adherence to them
would have contributed to the simplicity of pro-
tocols and avoided a considerable number of pub-
lished confusions and mistakes,

We arrived at our principles by noticing some
common features among protocols that are diffi-
cult to analyze. If these features are avoided, it
becomes less necessary to resort to formal tools—
and also easier to do o if there is good reason
to. The principles themselves are informal guide-
lines, and useful independently of any logic.

Weillustrate the principles with examples. We
draw our examples from the published literature,
in order to demonstrate the actual applicability
of our guidelines, Some of the oddities and er-
rors that we analyze here have been documented
previously (in particular, in [4]). Other examples
are new: protocols by Denning and Sacco [6], Lu
and Sundareshan (12], Varadharajan, Allen, an
Black [29], and Woo and Lam [32). We bel
they are all instructive

Generally, we choose examples from the au-
thentication literature, but the principles are ap-
plicable elsewhere, for example to electronic-cash
protocols (e.g., [15]). We focus on traditional
cryptography, and on protocols of the sort com-
monly implemented with the DES [18] and the
RSA (26] algorithms. In particular, we do not
consider the subtleties of interactive schemes for
signatures {e.g, [7]). Moreover, we do not discuss
the choice of cryptographic mechanisms with ad-
equate protection properties, the correct imple-
mentation of eryptographic primitives, ot their

Security expert

|

Security designer

Prudent Design Principles for Information Flow Control

[ulia Bastys Frank Piessens Andrei Sabelfeld
Chalmers University of Technology Katholieke Universiteit Leuven Chalmers University of Technology
Gothenburg, Sweden Heverlee, Belgium Gothenburg, Sweden
bastys@chalmers.se Frank. kuleuven b

ABSTRACT
Recent ycars have seena proliferation of rescarch on information
flow control. While the progress has been tremendous, it has also
given births 1o @ bewildering beeed of concepts, policies, conditions,
and enforcement mechanisms. Thus, when designing information
flow controls for & new application domain, the designer is con-
fronted with bwo basic questions: (i) Whal is the right security
characterization for a new application domain? and (if) What is the
right enforcement mechanis for a new application domain?
“This paper puts forward six informal principles for designing
iy definitions o
att trust avre " f policy

annotations and code, language-independence, ustified abstraction,
and permissiveness We particularly highlight the core principles of

leee-driven security and trust piving s @
rationale for deliberating over soundness vs. soundiness. The prin-

ciples contribute Lo rosdmapping the sate of the art in information
flow security, weeding out inconsistencies from the folldore, and
providing a rationale for designing information flow characteriza-
tions and enforcement mechanisms for new application domais.

€CS CONCEPTS
- Security and privacy — Formal methods and theory of se-
curity.

KEYWORDS
information flow control; attacker models; principles

ACM Reference Format:
Tul ik Piessens, and Andrei Sa belfeld. 2018, Prudent Design
iples for Information Flow Contral In The 13th Workshop on Pogram-
Languages and Analysis for Secarity (FLAS'18), October 19,2018, Toronto,
ON, Canada. ACM, New York, NY, USA, 7 pages. hitps dai org/10.1145
2648203264824

1 INTRODUCTION

Information flow ecntrol tracks the fow of inforation in systems.
aodates both confidentiality, when tracking infortation
from secrel sources finputs) Lo public sinks (outputs), and integrity,

It accon

when tracking information from untrusted sources 1o trusted sinks.

1ok digital ox hard copies o all ar part of his ok or persomal ar
granted wihout e proviled that copies are no made o distributed
o this notice

it B . Copyrights o cvprovuits of this ok aneissd by ot thes the

‘uther(s} maust be honored. Abstracting with crodit i permitied. To copy atherwise, or
repulich . .
andjors foe Reque.

PLAS 15, Dtobe

rissions fram permis dons sem o7
orontc, O, Canada
A eld by the ower suthors) Publiestion rights beensed ta ACM
ACMISEN 97514503 5993-1/18/10... 81500
it o arg/10 11485/ 1264520 2614528

Motivation. Recent years have seen a proliferation of research
on infsrmation flow control [16, 17, 19, 39, 49, 55, 67, 70, 72, 73],
leading to applications in a wide range of areas including hard
ware [8], operaling system microkernels [59] and virtualization
platforms [32], programming languages (3, 37), mobile operating
systems [44] web browsers (12, 43, web applications (13 45].and
distributed systems [50]. A recent special issue of Joumal of Com
puter Security on verified information flow [60] reflects an active
state of theart.

While the progress has been tremendous, it has also given birth
1o a bewildering beeed of concepts, policies, conditions, and e
foreement mechanisis. These are often unconnected and ad-hoe,
making it difficull 1o build on when developing new approac hes.
Thus, when designing information flow controls for a new applica
tion dormuin, the designer is confronted with two basic questions,
for which there is o standard recipe in the literature.

1. What is the right sceurily characterization for a new
application domain?

A number of information flow conditions has been proposed in
the literature. For confidentiality, noninterference (22 28]. s a con
monly advocated baseline condition stipulating thal secret inputs
do not affect public outputs. Yet noninterfercnce comes in differ
ent styles and flavors: termination-(in)sensitive [67, 9], progress-
(im)sensitive [3], and riming-sensitive [2], just to name a few. Other
characterizations include epistemic [4, 35], quantitative [73], and
conditions of information refease [70], as well as weak (78], ex
plicit (1], and observable (9] secrecy. Further, compositional se-
curity conditions 53, 61, 69] are often advocated, adding to the
complexity of choosing the right characterization.

Question 2. Whatis the right enforcement mechanism for a new
application domain?

The designer might struggle 10 select from the variety of mecha-
nisms available. Information flow enforcement mechunisms have
also been praposed in various styles and flavors, including statie (20,
23, 79), dynamic [25, 26, 33], hybrid (14, 58], flow- (in)sen sitive [41,
5], and language-(injdependent (11, 24]. Further, some track pure
data flows [72] whereas others also track control flow dependen
cies [67], adding to the complexity of choosing the right enforce-
ment me chanism

Contributions. This paper puts forward principles for designing
information low security definitions and enforcement mechanisis
The goal ofthe principles is to help roadmapping the state of the art
in information flow securily, weeding out inconsistencies from the
folldore, and providing a rationale for designing information flow
characterizations and mechanisms for new application domains
The rationale rests on the follow ing prineiples: aftacker-driven
security, trust-aware enforcement, separation of policy annotations

Accepted at PLAS'18!

Security expert

at does it
say?

|

Security designer

Prudent Design Principles for Information Flow Control

[ulia Bastys Frank Piessens Andrei Sabelfeld
Chalmers University of Technology Katholieke Universiteit Leuven Chalmers University of Technology
Gothenburg, Sweden Heverlee, Belgium Gothenburg, Sweden
bastys@chalmers.se Frank. kuleuven b

ABSTRACT
Recent ycars have seena proliferation of rescarch on information
flow control. While the progress has been tremendous, it has also
given births 1o @ bewildering beeed of concepts, policies, conditions,
and enforcement mechanisms. Thus, when designing information
flow controls for & new application domain, the designer is con-
fronted with bwo basic questions: (i) Whal is the right security
characterization for a new application domain? and (if) What is the
right enforcement mechanis for a new application domain?
“This paper puts forward six informal principles for designing
iy definitions o
attacker- V, Brust-awire. " fpolicy
annotations and code, language-independence, ustified abstraction,
and permissiveness We particularly highlight the core principles of
leee-driven security and trust piving s @
rationale for deliberating over soundness vs. soundiness. The prin-

ciples contribute Lo rosdmapping the sate of the art in information
flow security, weeding out inconsistencies from the folldore, and
providing a rationale for designing information flow characteriza-
tions and enforcement mechanisms for new application domais.

€CS CONCEPTS
- Security and privacy — Formal methods and theory of se-
curity.

KEYWORDS
information flow control; attacker models; principles

ACM Reference Format:
Tul ik Piessens, and Andrei Sa belfeld. 2018, Prudent Design
iples for Information Flow Contral In The 13th Workshop on Pogram-
Languages and Analysis for Secarity (FLAS'18), October 19,2018, Toronto,
ON, Canada. ACM, New York, NY, USA, 7 pages. hitps dai org/10.1145
2648203264824

1 INTRODUCTION

Information flow ecntrol tracks the fow of inforation in systems.
aodates both confidentiality, when tracking infortation
from secrel sources finputs) Lo public sinks (outputs), and integrity,
when tracking information from untrusted sources o trusted sinks.

It accon

Permission tomake digilal ot hard copies of al or part of this ok for persomal ar

classzoom use is grantod without e proviled thal copies ae ot made o distributed
o this notice

it B . Copyrights o cvprovuits of this ok aneissd by ot thes the

‘uther(s} maust be honored. Abstracting with crodit i permitied. To copy atherwise, or
repuliich to paston server .
andjors foe Reque.

PLAS 15, Dtobe

A eld by the ower suthors) Publiestion rights beensed ta ACM
ACMISEN 97514503 5993-1/18/10... 81500
it o arg/10 11485/ 1264520 2614528

Motivation. Recent years have seen a proliferation of research
on infsrmation flow control [16, 17, 19, 39, 49, 55, 67, 70, 72, 73],
leading to applications in a wide range of areas including hard
ware [8], operaling system microkernels [59] and virtualization
platforms [32], programming languages (3, 37), mobile operating
systems [44] web browsers (12, 43, web applications (13 45].and
distributed systems [50]. A recent special issue of Joumal of Com
puter Security on verified information flow [60] reflects an active
state of theart.

While the progress has been tremendous, it has also given birth
1o a bewildering beeed of concepts, policies, conditions, and e
foreement mechanisis. These are often unconnected and ad-hoe,
making it difficull 1o build on when developing new approac hes.
Thus, when designing information flow controls for a new applica
tion dormuin, the designer is confronted with two basic questions,
for which there is o standard recipe in the literature.

1. What is the right sceurily characterization for a new
application domain?

A number of information flow conditions has been proposed in
the literature. For confidentiality, noninterference (22 28]. s a con
monly advocated baseline condition stipulating thal secret inputs
do not affect public outputs. Yet noninterfercnce comes in differ
ent styles and flavors: termination-(in)sensitive [67, 9], progress-
(im)sensitive [3], and riming-sensitive [2], just to name a few. Other
characterizations include epistemic [4, 35], quantitative [73], and
conditions of information refease [70], as well as weak (78], ex
plicit (1], and observable (9] secrecy. Further, compositional se-
curity conditions 53, 61, 69] are often advocated, adding to the
complexity of choosing the right characterization.

Question 2. Whatis the right enforcement mechanism for a new
application domain?

The designer might struggle 10 select from the variety of mecha-
nisms available. Information flow enforcement mechunisms have
also been praposed in various styles and flavors, including statie (20,
23, 79), dynamic [25, 26, 33], hybrid (14, 58], flow- (in)sen sitive [41,
65), and language-(in)dependent 11, 24]. Further, some track pure
data flows [72] whereas others also track control flow dependen
cies [67], adding to the complexity of choosing the right enforce-
ment me chanism

Contributions. This paper puts forward principles for designing
information low security definitions and enforcement mechanisis
The goal ofthe principles is to help roadmapping the state of the art
in information flow securily, weeding out inconsistencies from the
folldore, and providing a rationale for designing information flow
characterizations and mechanisms for new application domains
The rationale rests on the follow ing prineiples: aftacker-driven
security, trust-aware enforcement, separation of policy annotations

Accepted at PLAS'18!

Security expert

JSFlow

¢ information flow tracker for
JavaScript
e ECMA/262 v.5 support

Jsftlow.net

1| < |

FlowFox

e web browser with information
flow control

¢ based on secure multi-execution
distrinet.cs.kuleuven._.be/software/

FlowFox/

il

Principle 1

Attacker-driven security

Security characterizations benefit from directly
connecting to a behavioral attacker model, expressing
(un)desirable behaviors in terms of system events that
attackers can observe and trigger.

Define
security based on
the attacker's
capabilities!

Progress-sensitive
noninterference

® security condition that prevents
information leakage via progress
channels:

® pairwise execution in low
equivalent environments results
the same sequences of output,
before possibly both diverging

Progress-insensitive
noninterference

® security condition that ignores
such channels:

* the observable behavior of the
program in different low
equivalent environments is
independent of secrets modulo
progress

Principle 1| Attacker-driven security

1 = O;

while (1 < Number_MAX VALUE) { output trace:
print(i); 0
it (i == secret) { 1

while (true) { }

%:i+1; \

secret - 1
} loops forever

Principle 1| Attacker-driven security

1 = O;

while (1 < Number_MAX VALUE) { output trace:
print(i); 0
it (i == secret) { 1

while (true) { }

%:i+1; \

secret - 1
} loops forever

Can the attacker observe intermediate outputs?
* YES => Progress-sensitive insecure
e NO => Progress-insensitive secure (accepted by JSFlow)

Principle 1| Attacker-driven security

Principle 2

Trust-aware security enforcement

Security enforcement benefits from explicit trust
assumptions, making clear the boundary between
trusted and untrusted computing base and guiding
the enforcement design in accord.

Choose
the EM based on
trust to code!

enforcement
mechanism?

false; }
false; }

N N =]

true
true
true
false
true

DX =X =

false
true
true
true
false

Principle 2 | Trust-aware security enforcement

JSFlow execution

h = true h = false

1 = true I = true I = true

k = true k = true k = true

iT (h) {1l = false; } 1 =~False 1 = true

it (1) { k = false; } k=%rue k = false
print(42); 42 42

Is the code trusted?

* YES => accepted by taint tracking
e NO => blocked by JSFlow when h = true

Principle 2 | Trust-aware security enforcement

Which security
characterization?

TINI
PSNI

noninterference .
NI quantitative

observable secrecy i
TSN explicit secrecy

epistemic timing-sensitive

weak secrecy
>
(@)
o0

—— — New application
- ~—_ | domain to secure

language-dependent

dynamic .
y . flow sensitive
control flow dependencies

flow insensitive pure data flows

hybrid
language-independent
Which enforcement
mechanism?

static

5

Security designer

From enforcement for untrusted code...

e [nformation flow control
e Secure multi-execution

Verification conditions

{® Compositional

* Blackbox mitigation

)

e Observable tracking
e Taint tracking

ssouaAlssiuiad

... to trusted

T® Invariants
e Unwiding conditions

¢ Termination-insensitiv

Relation
between the two
principles

Systematization in

the paper

From attacker-driven security...

* Noninterference
® Epistemic

e Quantitative

e Declassification

A1unoas

® Progress-insensitive
® Observable secrecy

* \Weak/explicit secrecy

... to soundiness

Principle 3

Separation of policy annotations
and code

Security policy annotations and code benefit from
clear separation, especially when the policy is trusted
and code is untrusted.

Separate
the security policy
from the code!

Dimensions of
declassification

what

e specifies what partial information
about a secret is released
® e.g., parity of secret

when

e specifies when information
should be released
® e.g., only after a certain time

where

e specifies where in a system
information is released
® e.g. via declassify statements

by whom

e specifies who controls
information release in a
computing system

Principle 3| Separation of policy annotations and code

JSFlow construct:
defines secret data

/

guess = Ibl(getUserlnput());
result = declassify(guess == pwd);

e untrusted code => result = declassify(pwd);
 strengthen with other dimensions: what, when, by whom
e JSFlow accepts both (only where dimension)

Principle 3| Separation of policy annotations and code

Principle 4

Language independence

Language-independent security conditions benefit
from abstracting away from the constructs of the
underlying language. Language-independent
enforcement benetits from simplicity and reuse.

Make
the security condition
and EM language-

independent!

false; }
false; }

X =X =T

true
true
true
false
true

DX =X =

false
true
true
true
false

Principle 4 | Language-independence

FlowFox execution

High run: Low run:

h = true h = false
I = true; I = true I = true
k = true; k = true k = true
it (h) {1 =*false; } 1 = false | = true
if (1) { k=fFfalse; } Kk = true k = false
print(42); 42 42

microflows between
language construcs

\

e Execution blocked by JSFlow when h = true
e Execution accepted by FlowFox: output 42 always produced

\

macroflows between
sources and sinks

Principle 4 | Language-independence

Principle s

Justified abstraction

The level of abstraction in the security model benefits
from reﬂecting attacker capabilities.

Reflect
attacker capabilities
in the attacker

Principle s | Justified abstraction

it (h) {
h*" = hy; h" = hy
}
else {
h*" = h,; h" = h,
}
h® = hy; h®" = hy h® = h;

Can the attacker time the execution?
e YES => Attacker learns h: if h = true then h; in the cache
e NO => Execution accepted by JSFlow (disregards timing)

Principle s | Justified abstraction

Principle 6

Permissiveness

Enforcement for untrusted code particularly benefits
from reducing false negatives (soundness), while
enforcement for trusted code particularly benefits
from reducing false positives (high permissiveness).

Provide
different coverage
based on code

trustiness!

h = true
1 = true I = true
k = true k = true
it (h) {1 = false; } I = false
it (1) { k = false; } k = true
print(42); 42
e false positive for JSSFlow when h = true

* accepted by taint trackers

DX =X =

false
true
true
true
false

Principle 6 | Permissiveness

d | :.;,#1 Attacker-
* p dr1ven securlt?{i-;tf. -

. 2. Trust- aware’

‘;s.securlty
k*ﬂ ‘enforcement

3 Se aratlon

'1_ of policy

4 Language 3

{.
e

N ".
.t‘. ﬂ
v

;\5 Justified

“abstraction

1ndependence -

5
,:u.

LA

ARRTLE
. ad
- A
sor NI

E 6. Permissi- |
- veness

> Static enforcement mechanismes:
Andrei Sabelfeld and Andrew Myers. Language-based information-flow security. In IEEE Journal
on Selected Areas in Communications 21, (2003).

> Dynamic techniques:

Gurvan Le Guernic. 2007. Confidentiality Enforcement Using Dynamic Information Flow
Analyses. Ph.D. Dissertation. Kansas State University. http://tel .archives-ouvertes.fr/tel-
00198621/Fr/.

> Dynamic taint analysis and symbolic execution:
Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All You Ever Wanted to
Know about Dynamic Taint Analysis and Forward Symbolic Execution (but Might Have Been

Afraid to Ask). In S&P 2010.

> JavaScript security policies and their enforcement:
Nataliia Bielova. Survey on JavaScript security policies and their enforcement mechanisms in a
web browser. In Journal of Log. Algebr. Program, 2013.

> Information flow techniques based on abstract interpretation:
Isabella Mastroeni. Abstract interpretation-based approaches to Security - A Survey on Abstract
Non-Interference and its Challenging Applications. arXiv preprint arXiv:1309.5131 129 (2013).

