Principled Flow Tracking in IoT and Low-Level Applications

Iulia Bastys

February 8th, 2022

Motivation

Connecting otherwise unconnected devices and services

event

event

Connecting otherwise unconnected devices and services

action

trigger

3rd party user publishes an app

IoT apps

User installs the app

IoT apps

User takes a photo

Photo is sent to IFTTT

Photo is backed up on Google Drive, as expected

The app may execute JavaScript, invisible to the user

IoT apps

JavaScript sandboxed

Sandboxing mechanism evaded

WebAssembly (Wasm)

- low-level programming language
- portable and fast
- high-performance web-applications

Memory safe and sandboxed execution environment

Memory safe and sandboxed execution environment

Separate memory and code space

Memory safe and sandboxed execution environment

Structured control flow

Separate memory and code space

Current security guarantees

Current security guarantees

- Information flow control (IFC)
 - formal security guarantees

Noninterference

Tracking flows

if (y^{secret}) then
 x^{public}:= true
else
 x^{public}:= false

Explicit flows

Implicit flows

Thesis structure

- Securing IoT apps
- Securing Wasm apps
- Design principles
- Enforcement granularity
- Automatic labeling

Thesis structure

- Securing IoT apps
- Securing Wasm apps
- Design principles
- Enforcement granularity
- Automatic labeling

If This Then What? Controlling Flows in IoT Apps

CCS 2018

Iulia Bastys, Musard Balliu, Andrei Sabelfeld

- IoT apps recap
- URL-based attacks
- Projected security
- FlowIT

IoT apps recap

Sandboxing mechanism evaded

URL-based attacks

URL upload attack

GoogleDrive.uploadFileFromUrlGoogleDrive.setURL(...)

by alexander

🖸 99k 🛛 works with 🎆

URL-based attacks

URL upload attack

GoogleDrive.uploadFileFromUrlGoogleDrive.setURL(...)

URL markup attack

Email.sendMeEmail.setBody(...)

works with 🎡

Drive by alexander

Automatically get an email every time you park your BMW with a map to where you're parked

by BMW Labs 🥝

⚠ 15k works with 🖂

URL-based attacks

URL upload attack

GoogleDrive.uploadFileFromUrlGoogleDrive.setURL(...)

URL markup attack

Email.sendMeEmail.setBody(...)

https://attacker.com?secret

by alexander

Ω 99k

works with \, 🏶

Automatically get an email every time you park your BMW with a map to where you're parked

by BMW Labs 🤗

Projected security (PS)

Attacker's observations on the sink are the same

www.attacker.com?loc|A = [www.attacker.com?loc]
www.ifttt.com/logo.png|A = []

- Dynamic monitor for PS $\langle c,m,S,\Gamma \rangle \xrightarrow{}_{pc_n} \langle c',m',S',\Gamma' \rangle$
- JSFlow-based implementation

- Evaluation on 60 apps (30 secure and 30 insecure)
 - No false negatives
 - Single false positive (on "artificial" code)

Clockwork: Tracking Remote Timing Attacks

CSF 2020

Iulia Bastys, Musard Balliu, Tamara Rezk, Andrei Sabelfeld

- Remote timing attacks
- Remote secure programs
- Clockwork

Remote timing attacks

clock, branch, I/O

 $t = \bigcirc \\ \text{secret = false} \\ \text{secret = true} \\ \text{if secret then } \{ \dots \} \\ \text{out}_{\text{pub}}(t) \\ \text{out}_{\text{pub}} \\ \text{out$

Remote attacker observation: secret = true if () out_{pub}

Remote timing attacks

Constant-time security

- popular in cryptographic implementations (e.g. AES, DES, SHA256, RSA)
- no branching on secret data
- useful for local attacker models
- too restrictive for remote attacker models

Constant-time insecure programs

branch, I/O

I/O, I/O, branch

if secret then { ... }
out_{pub}(1)

out_{pub}(1)
out_{pub}(2)
if secret then { ... }

Remote secure programs

branch, I/O

Clockwor

if secret then { ... }
out_{pub}(1)

out_{pub}(1)
out_{pub}(2)
if secret then { ... }

Remote attacker observation: secret \in {true, false}

Patterns of remote secure programs

one public output <u>after</u> branching on secret <u>if</u> no prior clock read OR public outputs

any public outputs <u>before</u> branching on secret; <u>unrestricted</u> clock reads

Clockwork

Clockwork

- Dynamic monitor for RS
- JSFlow-based implementation igodol

Case studies

A Principled Approach to Securing WebAssembly

Manuscript

Iulia Bastys, Maximilian Algehed, Alexander Sjösten, Andrei Sabelfeld

- WebAssembly apps recap
- SecWasm

WebAssembly apps recap

- Hybrid monitor
 - \circ γ , $C \vdash c \dashv \gamma'$
 - \circ (st, S, c) \Downarrow (st', S', θ)

Secure flow of information

Conclusion

