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IoT apps

Connecting otherwise unconnected devices and services
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IoT apps

Connecting otherwise unconnected devices and services
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IoT apps

3rd party user publishes an app

5



IoT apps

User installs the app
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IoT apps

User takes a photo
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IoT apps

Photo is sent to IFTTT
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IoT apps

Photo is backed up on Google Drive, as expected
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IoT apps

The app may execute JavaScript, invisible to the user
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IoT apps

JavaScript sandboxed
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IoT apps

Sandboxing mechanism evaded
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WebAssembly (Wasm)
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● low-level programming language

● portable and fast

● high-performance web-applications



WebAssembly apps

Memory safe and sandboxed 
execution environment
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WebAssembly apps

Memory safe and sandboxed 
execution environment

Separate memory and 
code space
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WebAssembly apps

Memory safe and sandboxed 
execution environment

Structured control flow

Separate memory and 
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Current security guarantees
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Current security guarantees
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IoT apps
Sandboxing mechanism evaded

WebAssembly apps

Memory safe and sandboxed 
execution environment

Structured control flow

Separate memory and 
code space

No guarantees for 
information flows

inefficient
insufficient

● Information flow control (IFC)
○ formal security guarantees



Noninterference

secret secret

publicpublic
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x     := y
public

Tracking flows

21

Explicit flows

if (y     ) then

   x     := true

else

   x     := false

Implicit flows

secret secret

public

public



Enforcement mechanisms
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Static

Γ ⊢ c : τ

security 
context

program

security type



Enforcement mechanisms
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Static

Γ ⊢ c : τ

Dynamic

(c, st, S)

security 
state

program 
state



Enforcement mechanisms
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Static

Γ ⊢ c : τ

Dynamic

(c, st, S) ⟶ (c’, st’, S’)



Enforcement mechanisms
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Static

Γ ⊢ c : τ

Dynamic

(c, st, S) ⟶ (c’, st’, S’)
e

attacker observation



Enforcement mechanisms
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Static
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Dynamic
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Enforcement mechanisms
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Static

Γ ⊢ c : τ

Dynamic

(c, st, S) ⟶ 
e

Hybrid

Γ ⊢ c : τ

(c, st, S) ⟶τ (c’, st’, S’)
e

↯



Challenges

Securing 
IoT apps

Securing 
Wasm 
apps

New security characterization 
and enforcement mechanism 

New security characterization and 
enforcement mechanism
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Challenges

Securing 
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Challenges

Securing 
IoT apps

Automatic 
labeling

Securing 
Wasm 
apps

Enforcement 
granularity

Design 
principles

Security characterization and
enforcement for new applications

Expressiveness relation between 
enforcement mechanisms

Towards widespread adoption of 
IFC techniques

New security characterization and 
enforcement mechanism

New security characterization 
and enforcement mechanism 
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Thesis structure

Securing IoT apps

Securing Wasm apps

Design principles

Enforcement granularity

Automatic labeling

A B C D

` G

FlowIT Clockwork
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B
FlowIT

If This Then What?
Controlling Flows in 
IoT Apps

CCS 2018

● IoT apps recap
● URL-based attacks
● Projected security
● FlowIT

Iulia Bastys, Musard Balliu, Andrei Sabelfeld
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IoT apps recap

Sandboxing mechanism evaded
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URL-based attacks

URL upload attack

GoogleDrive.uploadFileFromUrlGoogleDrive.setURL(...)
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URL-based attacks

URL upload attack

GoogleDrive.uploadFileFromUrlGoogleDrive.setURL(...)

URL-markup attack

Email.sendMeEmail.setBody(...)
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URL markup attack
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URL-based attacks

URL upload attack

GoogleDrive.uploadFileFromUrlGoogleDrive.setURL(...)

URL-markup attack

Email.sendMeEmail.setBody(...)

https://attacker.com?secret
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URL markup attack
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Projected security (PS)

www.attacker.com?loc|A = [www.attacker.com?loc]

www.ifttt.com/logo.png|A = []

~A

Attacker’s observations on the sink are the same
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FlowIT

● Dynamic monitor for PS

〈c,m,S,Γ〉 ⟶n〈c’,m’,S’,Γ’〉

● JSFlow-based implementation

● Evaluation on 60 apps (30 secure and 30 insecure)
○ No false negatives
○ Single false positive (on "artificial" code)
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● Remote timing attacks
● Remote secure programs
● Clockwork

D
Clockwork

Clockwork: Tracking 
Remote Timing Attacks

CSF 2020

Iulia Bastys, Musard Balliu, Tamara Rezk, Andrei 
Sabelfeld
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t = 

if secret then { ... }

out
pub
(t)

Remote timing attacks

clock, branch, I/O

secret = false secret = true

tt 

secret = true if

out
pub
 

out
pub
 

t 

out
pub
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Remote attacker observation:



out
pub
(1)

if secret then h1 = h2

out
pub
(2)

I/O, branch, I/O

Remote timing attacks
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if h then h1 = h2
out

L
(1)

h1 = h2
out

L
(2)

cache

D
Clockwork

t = 

if h % 2 = seconds(t) % 2 then h = h

else h = h; … ; h = h

out
L
(1)

high delay
if secret then h1 = h2

out
pub
(1)

h1 = h2

out
pub
(2)

cache

t = 

if h % 2 = seconds(t) % 2 then h = h

else h = h; … ; h = h

out
pub
(1)

high delay



Constant-time security

● popular in cryptographic implementations
(e.g. AES, DES, SHA256, RSA)

● no branching on secret data

● useful for local attacker models

● too restrictive for remote attacker models
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Constant-time insecure programs

branch, I/O I/O, I/O, branch

out
pub
(1)

out
pub
(2)

if secret then { ... }

if secret then { ... }

out
pub
(1)
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Remote secure programs

branch, I/O I/O, I/O, branch

out
pub
(1)

out
pub
(2)

if secret then { ... }

if secret then { ... }

out
pub
(1)

Remote attacker observation: secret ∊ {true, false}
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Patterns of remote secure programs

one public output after 
branching on secret
if no prior clock read OR 
public outputs

out
pub

Branch on 
secret

any public outputs before 
branching on secret; 
unrestricted clock reads

out
pub

...out
pub
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Clockwork

Branch on 
secret

out
pub

,

out
pub

,

Branch on 
secret

out
pub
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JSFlow
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● Dynamic monitor for RS

● JSFlow-based implementation

● Case studies

○

○

Clockwork D
Clockwork



SecWasm

E

A Principled Approach 
to Securing 
WebAssembly

Manuscript

● WebAssembly apps recap
● SecWasm

Iulia Bastys, Maximilian Algehed, Alexander 
Sjösten, Andrei Sabelfeld
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WebAssembly apps recap

Memory safe and sandboxed 
execution environment

Structured control flow

Separate memory and 
code space

No guarantees for 
information flows
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SecWasm
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SecWasm

E

● Hybrid monitor 

○ γ, C ⊢ c ⊣ γ’

○ (st, S, c) ⇓ (st’, S’, θ)

Secure flow of information
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