
Principled Flow Tracking in IoT
and Low-Level Applications

Iulia Bastys February 8th, 2022

<_
…

<_
…

IoT

Motivation

2

IoT apps

Connecting otherwise unconnected devices and services

3

if then
event

event

IoT apps

Connecting otherwise unconnected devices and services

4

if then
trigger

action

IoT apps

3rd party user publishes an app

5

IoT apps

User installs the app

6

IoT apps

User takes a photo

7

IoT apps

Photo is sent to IFTTT

8

IoT apps

Photo is backed up on Google Drive, as expected

9

IoT apps

The app may execute JavaScript, invisible to the user

10

IoT apps

JavaScript sandboxed

11

IoT apps

Sandboxing mechanism evaded

12

WebAssembly (Wasm)

13

● low-level programming language

● portable and fast

● high-performance web-applications

WebAssembly apps

Memory safe and sandboxed
execution environment

14

WebAssembly apps

Memory safe and sandboxed
execution environment

Separate memory and
code space

15

WebAssembly apps

Memory safe and sandboxed
execution environment

Structured control flow

Separate memory and
code space

16

WebAssembly apps

Memory safe and sandboxed
execution environment

Structured control flow

Separate memory and
code space

No guarantees for
information flows

17

Current security guarantees

18

IoT apps
Sandboxing mechanism evaded

WebAssembly apps

Memory safe and sandboxed
execution environment

Structured control flow

Separate memory and
code space

No guarantees for
information flows

inefficient
insufficient

Current security guarantees

19

IoT apps
Sandboxing mechanism evaded

WebAssembly apps

Memory safe and sandboxed
execution environment

Structured control flow

Separate memory and
code space

No guarantees for
information flows

inefficient
insufficient

● Information flow control (IFC)
○ formal security guarantees

Noninterference

secret secret

publicpublic

20

x := y
public

Tracking flows

21

Explicit flows

if (y) then

 x := true

else

 x := false

Implicit flows

secret secret

public

public

Enforcement mechanisms

22

Static

Γ ⊢ c : τ

security
context

program

security type

Enforcement mechanisms

23

Static

Γ ⊢ c : τ

Dynamic

(c, st, S)

security
state

program
state

Enforcement mechanisms

24

Static

Γ ⊢ c : τ

Dynamic

(c, st, S) ⟶ (c’, st’, S’)

Enforcement mechanisms

25

Static

Γ ⊢ c : τ

Dynamic

(c, st, S) ⟶ (c’, st’, S’)
e

attacker observation

Enforcement mechanisms

26

Static

Γ ⊢ c : τ

Dynamic

(c, st, S) ⟶
e

↯

Enforcement mechanisms

27

Static

Γ ⊢ c : τ

Dynamic

(c, st, S) ⟶
e

Hybrid

Γ ⊢ c : τ

(c, st, S) ⟶τ (c’, st’, S’)
e

↯

Challenges

Securing
IoT apps

Securing
Wasm
apps

New security characterization
and enforcement mechanism

New security characterization and
enforcement mechanism

28

Challenges

Securing
IoT apps

Securing
Wasm
apps

Design
principles

Security characterization and
enforcement for new applications

New security characterization
and enforcement mechanism

New security characterization and
enforcement mechanism

29

Challenges

Securing
IoT apps

Securing
Wasm
apps

Enforcement
granularity

Design
principles

Security characterization and
enforcement for new applications

Expressiveness relation between
enforcement mechanisms

New security characterization
and enforcement mechanism

New security characterization and
enforcement mechanism

30

Challenges

Securing
IoT apps

Automatic
labeling

Securing
Wasm
apps

Enforcement
granularity

Design
principles

Security characterization and
enforcement for new applications

Expressiveness relation between
enforcement mechanisms

Towards widespread adoption of
IFC techniques

New security characterization and
enforcement mechanism

New security characterization
and enforcement mechanism

31

Thesis structure

Securing IoT apps

Securing Wasm apps

Design principles

Enforcement granularity

Automatic labeling

A B C D

` G

FlowIT Clockwork

32

SecWasm

E F

H

Thesis structure

Securing IoT apps

Securing Wasm apps

Design principles

Enforcement granularity

Automatic labeling

A B C D

` G

FlowIT Clockwork

33

SecWasm

E F

H

B
FlowIT

If This Then What?
Controlling Flows in
IoT Apps

CCS 2018

● IoT apps recap
● URL-based attacks
● Projected security
● FlowIT

Iulia Bastys, Musard Balliu, Andrei Sabelfeld

34

IoT apps recap

Sandboxing mechanism evaded

35

B
FlowIT

URL-based attacks

URL upload attack

GoogleDrive.uploadFileFromUrlGoogleDrive.setURL(...)

36

B
FlowIT

URL-based attacks

URL upload attack

GoogleDrive.uploadFileFromUrlGoogleDrive.setURL(...)

URL-markup attack

Email.sendMeEmail.setBody(...)

37

URL markup attack

B
FlowIT

URL-based attacks

URL upload attack

GoogleDrive.uploadFileFromUrlGoogleDrive.setURL(...)

URL-markup attack

Email.sendMeEmail.setBody(...)

https://attacker.com?secret

38

URL markup attack

B
FlowIT

Projected security (PS)

www.attacker.com?loc|A = [www.attacker.com?loc]

www.ifttt.com/logo.png|A = []

~A

Attacker’s observations on the sink are the same

39

B
FlowIT

FlowIT

● Dynamic monitor for PS

〈c,m,S,Γ〉 ⟶n〈c’,m’,S’,Γ’〉

● JSFlow-based implementation

● Evaluation on 60 apps (30 secure and 30 insecure)
○ No false negatives
○ Single false positive (on "artificial" code)

40

JSFlow

B
FlowIT

pc

● Remote timing attacks
● Remote secure programs
● Clockwork

D
Clockwork

Clockwork: Tracking
Remote Timing Attacks

CSF 2020

Iulia Bastys, Musard Balliu, Tamara Rezk, Andrei
Sabelfeld

41

t =

if secret then { ... }

out
pub
(t)

Remote timing attacks

clock, branch, I/O

secret = false secret = true

tt

secret = true if

out
pub

out
pub

t

out
pub

42

D
Clockwork

Remote attacker observation:

out
pub
(1)

if secret then h1 = h2

out
pub
(2)

I/O, branch, I/O

Remote timing attacks

43

if h then h1 = h2
out

L
(1)

h1 = h2
out

L
(2)

cache

D
Clockwork

t =

if h % 2 = seconds(t) % 2 then h = h

else h = h; … ; h = h

out
L
(1)

high delay
if secret then h1 = h2

out
pub
(1)

h1 = h2

out
pub
(2)

cache

t =

if h % 2 = seconds(t) % 2 then h = h

else h = h; … ; h = h

out
pub
(1)

high delay

Constant-time security

● popular in cryptographic implementations
(e.g. AES, DES, SHA256, RSA)

● no branching on secret data

● useful for local attacker models

● too restrictive for remote attacker models

44

D
Clockwork

Constant-time insecure programs

branch, I/O I/O, I/O, branch

out
pub
(1)

out
pub
(2)

if secret then { ... }

if secret then { ... }

out
pub
(1)

45

D
Clockwork

Remote secure programs

branch, I/O I/O, I/O, branch

out
pub
(1)

out
pub
(2)

if secret then { ... }

if secret then { ... }

out
pub
(1)

Remote attacker observation: secret ∊ {true, false}
46

D
Clockwork

Patterns of remote secure programs

one public output after
branching on secret
if no prior clock read OR
public outputs

out
pub

Branch on
secret

any public outputs before
branching on secret;
unrestricted clock reads

out
pub

...out
pub

47

D
Clockwork

out
pub

...out
pu

b

out
pub
,

Clockwork

Branch on
secret

out
pub

,

out
pub

,

Branch on
secret

out
pub

48

D
Clockwork

JSFlow

49

● Dynamic monitor for RS

● JSFlow-based implementation

● Case studies

○

○

Clockwork D
Clockwork

SecWasm

E

A Principled Approach
to Securing
WebAssembly

Manuscript

● WebAssembly apps recap
● SecWasm

Iulia Bastys, Maximilian Algehed, Alexander
Sjösten, Andrei Sabelfeld

50

WebAssembly apps recap

Memory safe and sandboxed
execution environment

Structured control flow

Separate memory and
code space

No guarantees for
information flows

51

SecWasm

E

SecWasm

52

SecWasm

E

● Hybrid monitor

○ γ, C ⊢ c ⊣ γ’

○ (st, S, c) ⇓ (st’, S’, θ)

Secure flow of information

<_
…

<_
…Fci

IoT

Fci

Conclusion

53

