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WebAssembly (Wasm)

e |ow-level programming language
e portable and fast

e high-performance web-applications

WA

CHALMERS

13



WebAssembly apps

CHALMERS

Memory safe and sandboxed
execution environment

14



WebAssembly apps

CHALMERS

Memory safe and sandboxed
execution environment

Separate memory and
code space

15



WebAssembly apps

Memory safe and sandboxed
execution environment

Structured control flow

Separate memory and
code space

16



WebAssembly apps

CHALMERS

Memory safe and sandboxed
execution environment

Structured control flow

Separate memory and
code space

No guarantees for
information flows

17



Current security guarantees

CHALMERS

loT apps lnefﬁCient WebAssembly apps lnsUfficient

£ ‘ Memory safe and sandboxed Separate memory and
. eeeee tion environmen t code space
No guarantees for
information flows

o <7 2
an o

Structured control flow

18



Current security guarantees

CHALMERS

loT apps lnefﬁCient WebAssembly apps lnsUfficient

£ ‘ Memory safe and sandboxed Separate memory and
. eeeee tion environmen t code space
No guarantees for
information flows

o <7 2
an o

Structured control flow

e Information flow control (IFC)
o formal security guarantees
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Noninterference
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Tracking flows
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Challenges
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Towards widespread adoption of Automatic Enforcement Expressiveness relation between
IFC techniques labeling granularity enforcement mechanisms
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If This Then What?
Controlling Flows in
loT Apps

CCS 2018

lulia Bastys, Musard Balliu, Andrei Sabelfeld
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URL-based attacks
Projected security
FlowlT

34



loT apps recap 1

evaded




URL-based attacks

GoogleDrive.uploadFileFromUrlGoogleDrive.setURL(...)

D!

Automatically back
up your new iOS
photos to Google
Drive

by alexander

36



URL-based attacks

GoogleDrive.uploadFileFromUrlGoogleDrive.setURL(...)

Email.sendMeEmail.setBody(...)

A

Automatically back
up your new iOS
photos to Google
Drive

by alexander

£ 99k works with &

Automatically get
an email every
time you park your
BMW with a map
to where you're
parked

by BMW Labs @

£ 15k works with

37



URL-based attacks

GoogleDrive.uploadFileFromUrlGoogleDrive.setURL(...)

Email.sendMeEmail.setBody(...

https://attacker.com?secret

)

A

Automatically back
up your new iOS
photos to Google
Drive

by alexander

£ 99k works with &

Automatically get
an email every
time you park your
BMW with a map
to where you're
parked

by BMW Labs @

£ 15k works with



Projected security (PS)
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FlowIT

e Dynamic monitor for PS

(em,S,I) =2 {c’m,S'[")

e JSFlow-based implementation \\@’
A\

e Evaluation on 60 apps (30 secure and 30 insecure)
o No false negatives
o Single false positive (on "artificial" code)
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Clockwork: Tracking
Remote Timing Attacks

e Remote timing attacks
e Remote secure programs
e Clockwork

CSF 2020

lulia Bastys, Musard Balliu, Tamara Rezk, Andrei
Sabelfeld
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Remote timing attacks E

t = @ secret = false secret = true

if secret then { ... } : :

OUtpub(t) @ out . @OUtpub

t
Remote attacker observation: secret = true if @outpub
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Remote timing attacks

outpub(
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Constant-time security

e popular in cryptographic implementations
(e.g. AES, DES, SHA256, RSA)

® no branching on secret data
e useful for attacker models

e too restrictive for attacker models
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Constant-time insecure programs

X

if secret then { ... } outpub(l)
outpub(l) outpub(Z)
if secret then { ... }
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Remote secure programs ;

if secret then { ... } outpub(l)
outpub(l) outpub(Z)
if secret then { ... }

Remote attacker observation: secret € {true, false}
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Patterns of remote secure programs

Branch on @ @
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Clockwork

e Dynamic monitor for RS

e JSFlow-based implementation

e C(Case studies

*IFTTT
o Open L]
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A Principled Approach
to Securing
WebAssembly

Manuscript

lulia Bastys, Maximilian Algehed, Alexander
Sjosten, Andrei Sabelfeld
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WebAssembly apps recap
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Memory safe and sandboxed Separate memory and
execution environment code space

Structured control flow

No guarantees for
information flows
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SecWasm

B

e Hybrid monitor

o ¥, CkhcHy

O (St, S, C) U (St,, S” e) “

Secure flow of information
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