Principled Flow Tracking in loT
and Low-Level Applications

lulia Bastys

A NC , o | WALLENBERG Al
PSS Je? | AUTONOMOUS SYSTEMS
EfFVNED AND SOFTWARE PROGRAM
1829 &

C
O
=
(©
P
)
O
=

loT apps

CHALMERS

Connecting otherwise unconnected devices and services

e IFTTT

if L. then| . zapier

event ?

e~

Power Automate

loT apps

CHALMERS

Connecting otherwise unconnected devices and services

IFTTT
if £’ then zapier

trigger
LF

s

Power Automate

loT apps

CHALMERS

\

loT apps

P
b

CHALMERS

loT apps

CHALMERS

loT apps

CHALMERS

loT apps

CHALMERS

expected
T ‘

loT apps

CHALMERS

10

loT apps

sandboxed

P

¥e
if % then®

IFTTT

CHALMERS

1

loT apps

evaded

CHALMERS

12

WebAssembly (Wasm)

e |ow-level programming language
e portable and fast

e high-performance web-applications

WA

CHALMERS

13

WebAssembly apps

CHALMERS

Memory safe and sandboxed
execution environment

14

WebAssembly apps

CHALMERS

Memory safe and sandboxed
execution environment

Separate memory and
code space

15

WebAssembly apps

Memory safe and sandboxed
execution environment

Structured control flow

Separate memory and
code space

16

WebAssembly apps

CHALMERS

Memory safe and sandboxed
execution environment

Structured control flow

Separate memory and
code space

No guarantees for
information flows

17

Current security guarantees

CHALMERS

loT apps lnefﬁCient WebAssembly apps lnsUfficient

£ ‘ Memory safe and sandboxed Separate memory and
. eeeee tion environmen t code space
No guarantees for
information flows

o <7 2
an o

Structured control flow

18

Current security guarantees

CHALMERS

loT apps lnefﬁCient WebAssembly apps lnsUfficient

£ ‘ Memory safe and sandboxed Separate memory and
. eeeee tion environmen t code space
No guarantees for
information flows

o <7 2
an o

Structured control flow

e Information flow control (IFC)
o formal security guarantees

19

Noninterference

secret @

public)é >

20

Tracking flows

CHALMERS

Xpublic . secret secret

=y if (y) then
prbuC = true
else
xPUPLC. _ False

21

Enforcement mechanisms

CHALMERS

Static

[FCc:T — security type

oo

security program

context /

22

Enforcement mechanisms

Static

Dynamic

@ (c, s}t, s\)

program

state security

state

23

Enforcement mechanisms

Static

Dynamic

@ (c, st, S) — (¢, st), S)

v

24

Enforcement mechanisms

Static

Dynamic

(S

(c, st,S) — (¢, st, S)
% o9

attacker observation

PAS)

Enforcement mechanisms

Static

Dynamic

@ (c, st, S)—?i 4

26

Enforcement mechanisms

Static Dynamic

(c, st, S) —e>T (c), st), S’)

- 27

Challenges

New security characterization
and enforcement mechanism

Securing
loT apps

Securing
e

apps

New security characterization and
enforcement mechanism

CHALMERS

28

Challenges

CHALMERS

New security characterization and

Securing enforcement mechanism

Wasm
apps

Security characterization and
enforcement for new applications

New security characterization
and enforcement mechanism

Securing
loT apps

Design
principles

29

Challenges

CHALMERS

New security characterization and

Securing enforcement mechanism

Wasm
apps

Security characterization and
enforcement for new applications

New security characterization
and enforcement mechanism

Securing
loT apps

Design
principles

Enforcement Expressiveness relation between
granularity enforcement mechanisms

30

Challenges

CHALMERS

New security characterization and

Securing enforcement mechanism

Wasm
apps

Security characterization and
enforcement for new applications

New security characterization
and enforcement mechanism

Securing
loT apps

Design
principles

Towards widespread adoption of Automatic Enforcement Expressiveness relation between
IFC techniques labeling granularity enforcement mechanisms

31

Thesis structure

CHALMERS

4)

X B
@ FlowlT @ Clockwork

J
@ Securing loT apps

_

@® Securing Wasm apps

@ Design principles

B
0;0\ SecWasm

<

@ Enforcement granularity

@ Automatic labeling

32

Thesis structure

CHALMERS

(

X
@ FlowlT

@ Securing loT apps

_

@® Securing Wasm apps
@ Design principles

@ Enforcement granularity

@ Automatic labeling

33

If This Then What?
Controlling Flows in
loT Apps

CCS 2018

lulia Bastys, Musard Balliu, Andrei Sabelfeld

loT apps recap
URL-based attacks
Projected security
FlowlT

34

loT apps recap 1

evaded

URL-based attacks

GoogleDrive.uploadFileFromUrlGoogleDrive.setURL(...)

D!

Automatically back
up your new iOS
photos to Google
Drive

by alexander

36

URL-based attacks

GoogleDrive.uploadFileFromUrlGoogleDrive.setURL(...)

Email.sendMeEmail.setBody(...)

A

Automatically back
up your new iOS
photos to Google
Drive

by alexander

£ 99k works with &

Automatically get
an email every
time you park your
BMW with a map
to where you're
parked

by BMW Labs @

£ 15k works with

37

URL-based attacks

GoogleDrive.uploadFileFromUrlGoogleDrive.setURL(...)

Email.sendMeEmail.setBody(...

https://attacker.com?secret

)

A

Automatically back
up your new iOS
photos to Google
Drive

by alexander

£ 99k works with &

Automatically get
an email every
time you park your
BMW with a map
to where you're
parked

by BMW Labs @

£ 15k works with

Projected security (PS)

@ @
Automatically get
an email every
time you park your
BMW with a map
to where you're

parked

by BMW Labs @

Automatically get
an email every
time you park your
BMW with a map
to where you're
parked

by BMW Labs @

£ 15k works with IS £ 15k works with NS

www . attacker.com? |A = [www.attacker.com?loc]
www.ifttt.com/logo.png|A = []

FlowIT

e Dynamic monitor for PS

(em,S,I) =2 {c’m,S'[")

e JSFlow-based implementation \\@’
A\

e Evaluation on 60 apps (30 secure and 30 insecure)
o No false negatives
o Single false positive (on "artificial" code)

40

Clockwork: Tracking
Remote Timing Attacks

e Remote timing attacks
e Remote secure programs
e Clockwork

CSF 2020

lulia Bastys, Musard Balliu, Tamara Rezk, Andrei
Sabelfeld

41

Remote timing attacks E

t = @ secret = false secret = true

if secret then { ... } : :

OUtpub(t) @ out . @OUtpub

t
Remote attacker observation: secret = true if @outpub

42

Remote timing attacks

outpub(

i1f sec

outpub(

2

if secr
outpub(l‘
hli = h2
outpub(z‘

t =)

if h % 2
else h =
outpub(l)

= seconds(t) % 2 then h = h
h; .. ;

3

h =h

43

Constant-time security

e popular in cryptographic implementations
(e.g. AES, DES, SHA256, RSA)

® no branching on secret data
e useful for attacker models

e too restrictive for attacker models

44

Constant-time insecure programs

X

if secret then { ... } outpub(l)
outpub(l) outpub(Z)
if secret then { ... }

45

Remote secure programs ;

if secret then { ... } outpub(l)
outpub(l) outpub(Z)
if secret then { ... }

Remote attacker observation: secret € {true, false}

46

Patterns of remote secure programs

Branch on @ @
secret @ @
— > — —
outpub OUtpub' . .OU’Cpub
after before
branching on secret branching on secret;
if no prior clock read OR unrestricted clock reads

public outputs

Clockwork %

Branch on Branch on
secret secret

t Q@
,| _|g®, V- PP @ E?tp?-iutpu -

outpub

O ’

Clockwork

e Dynamic monitor for RS

e JSFlow-based implementation

e C(Case studies

*IFTTT
o Open L]

49

A Principled Approach
to Securing
WebAssembly

Manuscript

lulia Bastys, Maximilian Algehed, Alexander
Sjosten, Andrei Sabelfeld

WebAssembly apps recap
SecWasm

Bl

<10)

WebAssembly apps recap

B

Memory safe and sandboxed Separate memory and
execution environment code space

Structured control flow

No guarantees for
information flows

51

SecWasm

B

e Hybrid monitor

o ¥, CkhcHy

O (St, S, C) U (St,, S” e) “

Secure flow of information

52

-
O
0
=
O
-
@,
O

