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Summary

Secure multi-execution (SME) is a promising black-box technique for enforcing information
flow properties. Unlike traditional static or dynamic language-based techniques, SME satis-
fies noninterference (soundness) by construction and is also precise. SME executes a given
program twice. In one execution, called the high run, the program receives all inputs, but
the program’s public outputs are suppressed. In the other execution, called the low run, the
program receives only public inputs and declassified or, in the case where no declassification
is used, default inputs as a replacement for the secret inputs, but its private outputs are sup-
pressed.

This approach works well in theory, but, in practice, the program might not be prepared
to handle the declassified or default inputs, as they may differ a lot from the regular secret
inputs, or may contradict some invariant the program carries. As a consequence, the program
may produce incorrect outputs or it may crash. To avoid this problem, existing work makes
strong assumptions on the ability of the given program to robustly adapt to the declassified or
default inputs, limiting the class of programs to which SME applies.

In this thesis, we lift this limitation by presenting Asymmetric-SME (A-SME), a modifica-
tion of SME that gives up on the pretense that real programs are inherently robust to modified
inputs. Instead, A-SME requires a variant of the original program that has been adapted (by
the programmer or automatically) to react properly to declassified or default inputs. This vari-
ant, which we call the low slice, is used in A-SME as a replacement for the original program in
the low run. The original program and its low slice must be related by a semantic correctness
criteria, but beyond adhering to this criteria, A-SME offers complete flexibility in the construc-
tion of the low slice. We prove A-SME is sound even when the low slice is incorrect, and when
the low slice is correct, then A-SME is also precise. Additionally, we show that if a program is
policy compliant, then its low slice always exists, at least in theory.

A-SME’s solution assumes that the low slice is provided and does not describe a general
method for constructing it. Partly addressing this problem, we propose an automatic program
transformation for obtaining the low slice in the specific case when the declassification policy
blocks some (high) inputs at runtime, or when the (high) inputs are replaced by default values.
The behavior of A-SME is the same in both scenarios, i.e. it provides the low run with the
optional value None instead of the initial value for the high input.

The program transformation leverages an information flow type system for a dependency
analysis. The analysis precisely tracks which intermediate outputs are influenced by the in-
puts assigned None and, as a result, the transformation returns a low slice robust to missing

v



vi Asymmetric Secure Multi-Execution

inputs. Assuming the original program can be typed, we prove that the low slice is type-sound
(preserves well-typedness) and correct (functionally equivalent to the original program). Addi-
tionally, we show that the transformation is monotone, i.e. executing the transformed program
on more precise inputs (with fewer Nones) yields more precise outputs.

On the side, we also improve the state-of-the-art in declassification policies by supporting
policies that offer controlled choices to untrustworthy programs.
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Introduction

Motivation

Secure systems often rely on information flow control (IFC) to ensure that an unreliable appli-
cation cannot leak sensitive data to public outputs. The standard IFC policy is noninterference,
which says that confidential or high inputs must not affect public or low outputs. Tradition-
ally, noninterference and related policies have been enforced using static, dynamic, or hybrid
analyses of programs [3, 9, 11, 12, 13, 21, 22, 31], but it is known that such analyses cannot be
sound (reject all leaky programs) and precise (accept all leaky programs) simultaneously. Se-
cure multi-execution or SME is a promising recent technique that attains both soundness and
precision, at the expense of more computational power [16]. Additionally, SME is a black-box
monitoring technique that does not require access to the program’s source code or binary.

Briefly, SME runs two copies of the same program, called high and low, simultaneously. (We
focus here on two security levels, but a generalization to several security levels is possible.) The
low run is given only low (public) inputs and its high (secret) outputs are blocked. The high run
is given both low and high inputs, but its low outputs are blocked. Neither of the two runs can
both see high inputs and produce low outputs, so SME trivially enforces noninterference. Less
trivially, it can be shown that if a program is noninterfering semantically, then SME does not
change its output behavior, so SME is also precise. For emphasis, we restate the advantages
of SME below:

Noninterference by design. Due to the separation of inputs in different runs, neither of the
runs can both see high inputs and produce low outputs, hence noninterference is enforced by
construction.

Black-box mechanism. SME is language-independent, it does not require access to the pro-
gram’s source code or binary. All it needs is access to the inputs and outputs, allowing any
program with a distinguished syntax for inputs and outputs to be used.

Transparency. Running a noninterferent program with SME produces the same output as the
original program, however the transparency is achieved per-level. Recent results show that
precision across output levels can be obtained using barrier synchronization [28, 29].

Whereas SME may sound like the panacea for enforcing noninterference, it does have sev-
eral drawbacks. First, running two programs instead of a single one obviously requires more
computational power. However, SME has been implemented and tested in at least one large
application, namely the web browser Firefox [8]. As CPU cores become cheaper, we expect
SME to scale better and to be applied to other applications as well. Second, its deployment in
practice faces a fundamental issue: Since the low run cannot be provided high inputs, what
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4 Asymmetric Secure Multi-Execution

must it be provided instead? The classical SME design [16] proposes providing dummy values
like 0 or null whenever the low run requires access to a sensitive input. Unfortunately, these
values might not be a convenient choice in all cases and they could potentially lead to the
program crashing or producing unexpected results.

A similar problem is encountered when declassification is added to SME. Noninterference
is too strict for practical applications and, in order for an application to be useful, some re-
lease of information is needed. Traditionally, SME offers no support for declassification and,
in general, adding declassification to SME is challenging due to the separation of information
between the low and high runs. Although promising, the combination of declassification and
SME is relatively understudied and the current approaches are to some extent unsatisfactory
(see Subsection 3.6). In their seminal work on enforcing declassification policies with SME [34],
Vanhoef et al. advocate providing policy-declassified values in place of high inputs. However,
depending on the declassification policy, the high inputs received by the low run of the program
might even have a different semantics than the actual high inputs (see Example 2). Conse-
quently, the program must be aware of, and robust to, changes in its high inputs’ semantics,
otherwise the low run may crash or produce erroneous outputs. This is somewhat contrary to
the spirit of SME, which aims to be sound and precise on all (unmodified) programs.

Asymmetric SME (A-SME)

The robustness requirement limits the programs to which SME can be applied in practice. To
circumvent this limitation and to broaden the scope of enforcement of declassification policies
with SME, we propose a modification of SME that gives up on the original design of executing
the same program in both the high and low runs. Instead, a second program that has been
adapted to use declassified inputs (or default inputs in the degenerate scenario where no de-
classification is required) in place of regular high inputs is used for the low run. This second
program, which we call the low slice, may be constructed by the programmer or by slicing the
original program automatically.

The resulting paradigm is what we call asymmetric SME or A-SME, and we expect it to
successfully address the drawbacks of classic SME (with declassification). We reckon the dis-
advantages of SME and indicate how our method addresses them:

Dummy values and declassification. In the classical SME design, the low run is given a declas-
sified value (or default inputs, such as 0 or null when no declassification is allowed) in place
of regular high inputs. Since the low slice is designed according to the declassification policy,
it will be prepared to handle any potential changes in the input semantics. Hence, by using in
the low run a program (the low slice) that is adapted to receive modified high inputs, we solve
this problem by default.

Program transformation

A-SME is a framework that enforces declassification policies with SME and which uses, in
this regard, a variant of the original program—the low slice—adapted in some way to react
properly to declassified or default inputs. In this thesis, we do not describe a general algorithm
for obtaining the low slice, we mainly assume the low slice is provided by the programmer.
However, we do take a step towards specifying how the program must be modified to obtain
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the low slice in the special case when a default value is provided for the high inputs, or when
the declassification policy blocks some (high) inputs at runtime.

Our choice for the default value is the optional value None, and None is also returned by
A-SME whenever the declassification policy ‘refuses’ to provide a value for some (high) inputs.
(An optional value can be seen as a variable holding either a value, or no value–None.)

We obtain the low slice by means of an automatic program transformation, which given a
source program, returns a target program. The novelty of our approach in program transforma-
tion is represented by leveraging an information flow type system for a dependence analysis.
The analysis precisely tracks which intermediate outputs are influenced by the inputs assigned
None and, as a result, the transformation returns a low slice robust to missing inputs.

Improving expressiveness of declassification policies

On the side, we improve the state-of-the-art in declassification policies. More specifically, we
improve upon the work of Vanhoef et al. [34]. First, we allow declassification to depend on feed-
back from the program and, second, we allow the sensitivity of an input’s presence to depend
on policy state. We explain these two points below.

Output feedback. We allow policy state to depend on program outputs. This feedback from
the program to the policy permits the policy to offer the program controlled choices in what is
declassified, without having to introspect into the state of the program. The following examples
illustrate this:

Example 1. Consider a data server, which spawns a separate handler process for every client
session. A requirement may be that each handler process declassifies (across the network)
the data of at most one client, but the process may choose which client that is. With output
feedback, the handler process can produce a special high output, seen only by the SME monitor,
to name the client whose data the process wants to access. Subsequently, the policy will deny
the low run any data not belonging to that client.

Example 2. Consider an outsourced audit process for income tax returns. A significant con-
cern may be subject privacy. Suppose that the process initially reads non-identifying data
about all returns (e.g., only gross incomes and pseudonyms of subjects), and then decides which
1% of the returns it wants to audit in detail. With output feedback, we may enforce a very flex-
ible policy without interfering with the audit’s functionality: The low run of the audit process
can see (and, hence, leak) the detailed data of only 1% of all audit forms, but it can choose
which forms constitute the 1%.

State-dependent input presence. Like some prior work on SME [8], we consider a reactive set-
ting, where the program being monitored reacts to inputs provided externally. In this setting,
the mere presence of an input (not just its content) may be sensitive. SME typically handles
sensitive input presence by not invoking the low run for an input whose presence is high [8, 34].
Generalizing this, our policies allow the decision of whether an input’s presence is high to de-
pend on the policy state (i.e., on past inputs and outputs). This is useful in some cases, as the
following example demonstrates:

Example 3. Consider a news website whose landing page allows the visitor to choose news
feeds from topics like politics, sports, and social, and allows the user to interact with the feed
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by liking news items. When the user clicks one of these topics, its feed is displayed using AJAX,
without navigating the user to another page. On the side, untrusted third-party scripts track
mouse clicks for page analytics. A privacy-conscious user may want to hide her interaction
with certain feeds from the tracking scripts. For example, the occurrence of a mouse click on
the politics feed may be sensitive, but a similar click on the sports feed may not be. Thus, the
sensitivity of mouse click presence on the page depends on the topic being browsed, making
the sensitivity state-dependent.

Contributions

To summarize, in this thesis we make the following contributions:

• We introduce asymmetric SME (A-SME), a variant of SME that uses an additional program
(the low slice) adapted to process declassified values in the low run (Chapter 3). This ex-
pands the set of programs on which declassification policies can be enforced precisely using
SME.

• We increase the expressiveness of declassification policies in SME by supporting program
feedback and state-dependent input presence (Chapter 2).

• We prove formally that A-SME enforcement is always secure (Section 3.3) and, given a cor-
rect low slice, also precise (Section 3.4). We show that if the program conforms to the policy
then its low slice always exists, at least in theory (Section 3.5).

• We describe a program transformation based on an information flow type system for obtain-
ing the low slice in the case when A-SME assigns a default value to the high inputs, or when
it blocks some inputs at runtime (Chapter 4). We prove the low slice is type-sound (preserves
well-typedness) and correct (functionally equivalent to the original program), and that the
transformation is monotone (Section 4.5).



Declassification policies

This chapter describes the declassification policies. The first two sections are introductory, with
Section 2.1 presenting a brief overview on (stateful) declassification policies and Section 2.2
describing the (reactive) programming model. Section 2.3 defines the declassification policies
formally and Section 2.4 illustrates the expressiveness of our policies by means of several
examples. We conclude with Section 2.5, by mentioning some related work in the area.

Overview

Secure systems often rely on information flow control (IFC) to ensure that applications do
not leak sensitive data to public outputs. The standard IFC policy is non-interference, which
says that low or public outputs should not be influenced by high or secret inputs. Under this
requirement, even the trivial password authentication would be deemed insecure, as it violates
the conservative property via an implicit flow. An incorrect guess at the password will provide
a malicious user with the information that the password is not the one she guessed. Although
minor, this represents a flow of information from the secret (high) password to the public (low)
user, thus violating non-interference.

As a consequence, practical applications require some intended release of sensitive infor-
mation, and in this regard, several approaches that allow for a controlled release of informa-
tion were suggested: declassify statements [2, 3, 22, 28, 31, 34], condition-based declassification
[11, 12, 13], state predicates [7, 15], or external declassification policies [9, 33, 34].

In this thesis, we focus on reactive programs and declassification policies specified sepa-
rately from the monitored program’s logic. The rationale for this focus is straightforward: both
web and mobile applications are inherently reactive and, due to the open nature of the two
platforms, applications cannot be trusted to declassify sensitive information correctly in their
own code.

Our declassification policies are stateful, i.e. they maintain a state of their own which is
independent from the monitored program’s memory and which gets updated on every input
and output. As in previous work [27, 28, 34], we distinguish between presence and content
sensitivity of inputs. Though based on the stateful declassification policies defined by Van-
hoef et al. [34], our policies improve expressivity, as they allow for output feedback and state-
dependent input presence (Section 2.3).

Unlike previous work, we do not assume the program to be annotated with declassify state-
ments and do not consider an additional declassification channel where the declassified values
are stored and read from every time the program reaches a declassify annotation. Instead, the
value declassified by the policy is sent to the program as a new input.

7
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In Chapter 3 we describe a new method for enforcing the declassification policies. Before
delving into the details of our policies and defining them formally, we first introduce the (reac-
tive) programming model.

Programming model

Reactive programs are programs invoked by the runtime when an input is available from the
program’s environment. In response, the program produces a list of outputs and this input-
output pattern repeats indefinitely. In processing every input, the program may update its
internal memory and during the next invocation, the runtime passes the updated memory to
the program. This allows past inputs to affect the response to future inputs. Reactive programs
are a ubiquitous model of computing and web browsers, servers, and OS shells are all examples
of reactive programs.

Let Input, Output, and Memory denote the domains of inputs, outputs, and memories for
programs, and let [τ] denote a finite, possibly empty list of elements of type τ.

Definition 1 (Reactive program). A reactive program p is a function of type Input×Memory 7→
[Output]×Memory.

The program p accepts an input and its last memory and produces a list of outputs and an
updated memory. We deliberately avoid introducing a syntax for the reactive programs, as the
enforcement technique we will present in Chapter 3 is black-box and does not care about the
syntax of the program it monitors. It only needs access to the inputs and outputs. Concretely,
the program p may be written in any programming language with a distinguished syntax for
inputs and outputs.

We use the letters i, I, O, and µ to denote elements of Input, [Input], [Output], and
Memory. p(i,µ) = (O,µ′) means that the program p, when given input i in memory µ, pro-
duces the list of outputs O and the new memory µ′. A run of the program p, written E, is a
finite sequence of the form (i1,O1), . . . , (in,On). The run means that starting from some ini-
tial memory, when the program is invoked sequentially on the inputs i1, . . . , in, it produces
the output lists O1, . . . ,On, respectively. For E = (i1,O1), . . . , (in,On), we define its projection to
inputs E|i = i1, . . . , in and its projection to outputs E|o = O1++ . . .++On, where ++ denotes list
concatenation.

Formally, the semantics of a reactive program p are defined by the judgment I,µ −→p E
(Figure 2.1), which means that program p, when started in initial memory µ and given the
sequence of inputs I, produces the run E. Here, i :: I denotes the list obtained by adding
element i to the beginning of the list I. Note that if I,µ−→p E, then E|i = I and |E| = |I|.

[],µ−→p []
R1

p(i,µ)= (O,µ′) I,µ′ −→p E

i :: I,µ−→p (i,O) :: E
R2

Figure 2.1: Reactive semantics.
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Policy definition

As we previously mentioned, we consider security policies specified outside the program as in-
dependent stateful programs, whose state is completely disjoint from the monitored program’s
memory and is inaccessible to the program directly. The policy’s state may be updated on every
input and every output and in each state a declassified value may be produced. More formally,

Definition 2 (Policy D). A declassification policy D is a tuple (S,updi,updo,σ,π), where:

• S is a possibly infinite set of states. Our policy examples (and metatheorems in Chap-
ter 3) often specify the initial state separately.

• updi : S× Input → S and updo : S× [Output] → S are functions used to update the state
on program input and output, respectively.

• σ : S → Bool specifies whether the presence of the last input is low or high. When σ(s) =
true, the input that caused the state to transition to s has low presence, else it has high
presence.

• π : S → Declassified is the projection or declassification function that returns the de-
classified value for a given state. This value is provided as input to the low slice when
σ(s)= true (see Chapter 3). Declassified is the domain of declassified values.

Policy examples

In this section we illustrate the expressivity of our policies by means of several realistic exam-
ples. We begin with an example taken from Vanhoef et al. [34] which highlights the advantage
of having the policy state depend on inputs.

Example 4 (Declassification of aggregate inputs). A browsing analytics script running on an
interactive webpage records user mouse clicks to help the webpage developer optimize content
placement in the future. A desired policy might be to prevent the script from recording every
individual click and, instead, release the average coordinates of blocks of 10 mouse clicks.
Listing 1 shows an encoding of this policy. The policy’s internal state records the number of
clicks and the sum of click coordinates in the variables cnt and sum, respectively. The policy’s
input update function updi takes the new coordinate x of a mouse click, and updates both cnt
and sum, except on every 10th click, when the avg (average) is updated and cnt and sum are
reset. The projection function π simply returns the stored avg. Finally, since the last average
can always be declassified, the input presence function σ always returns true. The output
update function updo is irrelevant for this example and is not shown.

Remark: We do not explicitly pass the internal state of the policy to the functions updi, updo,
σ, and π, nor return it from updi and updo. This is a convention we use, as the state is implicitly
accessible in the policy’s state variables, such as cnt, sum, and avg.

The next example illustrates the use of the input presence function σ.

Example 5 (State-dependent input presence). A news website allows the user to browse one of
three possible topics: politics, sports, or social. A declassification policy monitoring the mouse



10 Asymmetric Secure Multi-Execution

Listing 1 INPUT AGGREGATION

Policy state s (local variables):
cnt : int
sum : int
avg : int

Initialization: cnt= 0; sum= 0; avg = 0;
Update functions:

updi(MouseClick x)=
case cnt of

| 9→ {cnt= 0;avg = (sum+ x)/10;sum= 0; }
| _→ {cnt= cnt+1;sum= sum+ x; }

Presence decision function:
σ()= true.

Projection function:
π()= avg.

clicks can be the following: On the sports page, mouse clicks are not sensitive; on the social
page, the average of 10 mouse click coordinates can be declassified (as in Example 4); on the
politics page, not even the existence of a mouse click can be revealed.

Listing 2 shows an encoding of this policy. The policy records the current topic being
browsed by the user in the state variable st, which may take one of four values: initial, politics,
sports, and social. Upon an input (function updi), the value of the new policy state is estab-
lished based on st. For st = sports, the click’s coordinate x is stored in the variable last_click.
For st = social, the policy mimics the behavior of Example 4, updating a click counter cnt, a
click coordinate accumulator sum, and the average avg once in every 10 clicks. Importantly,
when st= politics, the policy state is not updated (the input is ignored). A separate component
of updi not shown here changes st when the user clicks on topic change buttons.

The input presence function σ labels the input to high when st ∈ {politics, initial} (output is
false) and to low otherwise. Hence, when the user is browsing politics, not even the presence of
inputs is released.

The projection function π declassifies the last click coordinate last_click when the user is
browsing sports and the average of the last block of 10 clicks stored in avg when the user is
browsing social topics. The value returned by the projection function is irrelevant when the
user is browsing politics or has not chosen a topic (because in those states σ returns high), so
these cases are not shown.

The example below illustrates policy state dependence on program output, which allows
feedback from the monitored program to the policy.

Example 6 (Output feedback: Data server). Assume a data server handles the data of three
clients — Alice, Bob, and Charlie. The policy is that the data of at most one of these clients
may be declassified by a server process and the process may choose this one client. An encoding
of the policy is shown in Listing 3. The policy tracks the process’ choice in variable st, which
can take one of the four values: none (choice not yet made), alice, bob, or charlie. To make the
choice, the process produces an output specifying a user whose data it wants to declassify. The
function updo records the server’s choice in st if the process has not already made the choice
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Listing 2 STATE-DEPENDENT INPUT PRESENCE

Policy state s (local variables):
st : {initial,sports,politics,social}
cnt : int
sum : int
last_click : int

Initialization: st= initial; cnt= 0; sum= 0; last_click= 0;
Update functions:

updi(MouseClick x)=
case st of

| sports→ {last_click= x; }
| social→

case cnt of
| 10→ {cnt= 1; sum= x; }
| _→ {cnt= cnt+1;sum= sum+ x; }

Presence decision function:
σ()=

case st of
| initial→ false
| sports→ true
| politics→ false
| social→ case cnt of | 10→ true | _→ false.

Projection function:
π()=

case st of
| sports→ last_click
| social→ sum/10.

(updo checks that st = none). When user data is read (i.e., a new input from the file system
appears), the input update function updi compares st to the user whose data is read. If the two
match, the read data d is stored in the policy state variable data, else null is stored in data.
The projection function π simply declassifies the value stored in data.

The last example also illustrates feedback from the program to the policy.

Example 7 (Output feedback: Audit). Assume an untrusted audit process which is initially
provided with pseudonyms and non-sensitive information of several client records. Later it
identifies a certain fraction of these records which must be declassified in full for further ex-
amination. In addition, we assume the audit process reads exactly 100 records and then selects
1 record to be declassified for further examination. Pseudonyms are simply indices into an ar-
ray maintained by the policy. An encoding of the corresponding policy is shown in Listing 4.
The policy variable count counts the number of records fed to the program so far. While count
is less than 100, the input update function updi simply stores each input record i of five fields
in the array records. When count reaches 100, the output update function updo allows the pro-
gram to provide a single index idx, which identifies the record that must be declassified in full.
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Listing 3 OUTPUT FEEDBACK: DATA SERVER

Policy state s (local variables):
st : {none,alice,bob,charlie}
data : file

Initialization: st= none; data= null;
Update functions:

updo(RestrictAccessTo user)=
if (st= none) then

case user of
|Alice→ {st= alice; }
|Bob→ {st= bob; }
|Charlie→ {st= charlie; }

updi(PrivateData (user,d))=
if (st= user) then {data= d; } else {data= null; }

Presence decision function:
σ()= true.

Projection function:
π()= data.

The full record stored at this index is transferred to the variable declassified, the array records
is erased and count is set to ∞ to encode the fact that the process has made its choice.

The projection function π reveals only the index and the gross income of the last input (at
index count−1 in records) while count is not ∞. When count has been set to ∞, the single
record chosen by the process is revealed in full through the variable declassified.

Related work

Systems that enforce pure noninterference are overly restrictive and disallow all leaks, be they
intentional or not. Previous work focused on proving weaker versions of noninterference for
applications that specify intended leaks. The most common approach for specifying controlled
release of information is by inserting declassify annotations in the program, but other methods
suggest condition-based declassification [11, 12, 13], declassification as state predicates [7, 15],
or external declassification policies [21, 33, 34].

Dimensions of declassification. Sabelfeld and Sands [32] survey different methods for
representing and enforcing declassification policies and provide a set of four dimensions for
declassification models. These dimensions — what, where, when, and who — have been inves-
tigated significantly in literature. Policies often encompass a single dimension, such as what in
delimited release [31], where in gradual release [2], or who in the context of faceted values [5],
but sometimes also encompass more than one dimension, such as what and where in localized
delimited release [3], or what and who in decentralized delimited release [22]. Our security
policies encompass the what and when dimensions of declassification. We do not consider pro-
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Listing 4 OUTPUT FEEDBACK: AUDIT

Policy state s (local variables):
records : array[100]∗array[5]
count : int
declassified : array[5]

Initialization: records= null; count= 0; declassified= null;
Update functions:

updi(i)=
case count of

| 100= return;
| x = {records[x]= i;count= x+1; }

updo(idx)=
case count of

| 100= {declassified= records[idx];records= null;count=∞; }
| _= return;

Presence decision function:
σ()= true

Projection function:
π()=

case count of
|∞= declassified
| _= let (idx,name,address,phone, income)= records[count−1] in (idx, income)

grams with explicit declassify commands (in fact, we do not consider any syntax for programs1)
and, hence, we do not consider the where dimension of declassification [28, 31, 34].

Levels of sensitivity. In many applications, not only is the content of a message sensitive,
but also its presence. Following the approach of Rafnsson et al. [27], we distinguish between
sensitivity levels of presence and content of messages. While in the approach of Vanhoef et
al. [34] the sensitivity levels for input presence are known a priori, in our design inputs have
high presence by default and policy function σ is the one that decides, based on the policy state,
whether the presence of an input should be made visible to a low adversary or not.

Declassification policies as state predicates. Constanzo and Shao [15] use a separa-
tion logic for enforcing declassification policies based on Hoare logic, facilitating reasoning on
programs specified in C-like, imperative languages. The policies and security guarantees are
expressed through state predicates. We believe our policies are at least as expressive as the
ones enforced by their system. The policies of Banerjee et al. [7] are also specified as state
predicates, but enforced through a type system, rather than a program logic.

External policies. In the context of security policies specified separately from code, Li and
Zdancewic [21] propose relaxed non-interference, a security property that applies to declassi-

1In Chapter 4, when we discuss the program transformation for obtaining the low slice, we introduce an explicit
syntax for programs.
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fication policies written in a separate language. The policies, expressed as lambda terms over
inputs, are treated as security levels and enforced through a type system. The type system
can enforce a wide range of declassification policies (also enforceable by A-SME), such as “data
must be encrypted before sending it to the network”, or “x and y are secrets, but their sum is
public” [21]. However, their enforcement mechanism cannot handle policies representing ex-
pressions that result from global computations, such as λx : Int.λp : Int.(x+ p)× p [21], while
A-SME does.

Swamy et al. [33] also define policies separate from the program. Their policies are ex-
pressed as security automata in a new language called AIR (automata for information release)
and are also enforced by a type system.

For a dynamic enforcement such as SME, Kashyap et al. [18] suggest, but do not develop,
the idea of writing declassification policies as separate sub-programs. Our work ultimately
draws some lineage from this idea. More inspiring were the policies of Vanhoef et al. [34]
which we use as starting point when designing our declassification policies. However, while
specifying the policies as external sub-programs, Vanhoef et al. also use declassify annotations
in the program. The value to which the expression under a declassify annotation evaluates to
is the value stored currently in the policy state (similar to our function π). In contrast, we do
not consider any syntax for the programs and our policies send the declassified values as new
inputs to the program.

Stateful declassification policies. Swamy et al. [33] define stateful policies expressed as
security automata. The policies specify release obligations and transition states when one of
these obligations is satisfied. When all obligations are fulfilled, then the automaton reaches
an accepting state and performs a declassification. However expressive, these policies do not
encompass the when dimension of declassification (i.e., do not specify when information must
be released). As we mentioned earlier, the policies are enforced using a type system.

The language Paralocks [9] also supports stateful declassification policies enforced by a
type system. There, the policies are represented as sets of Horn clauses, whose antecedents
are called locks. Locks are predicates with zero or more parameters and they exhibit two
states: opened (true) and closed (false). The type system statically tracks which locks are
open and which locks are closed at every program point. As the authors indicate themselves,
the Paralocks model can encode simple what policies, but satisfying the what dimension of
declassification is not their main focus.

The conditional declassification policies of Chong and Myers are similar with the ones
expressed by Paralocks, but more abstract, and also enforced using a type system [11, 12, 13].

The policies of Vanhoef et al. contain a stateful release function release used to declassify
aggregate information about past inputs. While our policies can also declassify aggregate infor-
mation about past inputs, in addition, they also allow for output feedback and state-dependent
input presence. The output feedback is useful as it gives the program controlled choices in
what should be declassified. Considering again Example 7, the policy declassifies the client
record, but the audit process is the one that chooses which record should be declassified.



Asymmetric SME

In this chapter we describe the details of our dynamic technique—Asymmetric SME (A-SME)—
we use for enforcing the policies described in the previous chapter. The chapter begins with a
brief introduction to A-SME (Section 3.1) and a description of the semantics of A-SME (Sec-
tion 3.2). We continue with proving that A-SME is always secure (Section 3.3) and, given a
correct low slice, also precise (Section 3.4). In Section 3.5 we show that if the program con-
forms to the policy then its low slice exists, at least in theory. Section 3.6 compares A-SME
with previous approaches on SME and Section 3.7 concludes with related work.

Overview

A-SME builds on classic SME, but uses different programs in the high and low runs (hence
the adjective asymmetric). Classic SME—as described, for example by Vanhoef et al. [34]—
enforces a declassification policy on a reactive program by maintaining two independent runs
of the given program. The first run, called the high run, is invoked on every new input and is
provided the new input as-is. The second run, called the low run, is invoked for an input only
when the input’s presence (as determined by the policy) is low. Additionally, the low run is not
given the original input, but a projected (declassified) value obtained from the policy after the
policy’s state has been updated with the new input. Only high outputs are retained from the
high run (these are not visible to the adversary) and only low outputs are retained from the
low run (these are visible to the adversary). Since the low run sees only declassified values and
the high run does not produce low outputs, it must be the case that the low outputs depend
only on declassified values. This enforces a form of noninterference.

The problem with classic SME, which we seek to address by moving to A-SME, is that
even though the low and the high runs execute the same program, they receive completely
different inputs — the high run receives raw inputs, whereas the low run receives inputs
created by the declassification policy. This leads to two problems. First, if the programmer is
not aware that her program will run with SME, the low run may crash because it may not be
prepared to handle the completely different types of the declassified inputs. Fundamentally,
it seems impossible for the program to automatically adapt to the different inputs of the high
and the low runs, because it gets no indication of which run it is executing in! Second, if the
program tries to enforce the declassification policy internally (which a non-malicious program
will likely do), then in the low run, the projection function is applied twice — once by the SME
monitor and then internally by the program. In contrast, in a run without SME, the function
is applied only once. As a consequence, one must assume that the function that implements
declassification is idempotent (e.g., in the approach of Vanhoef et al. [34], this declassification

15
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function is called “project” and it must be idempotent). These two limitations restrict the
scenarios in which SME can be used to enforce declassification policies.

To broaden the scope of enforcement of declassification policies with SME, we propose to do
away with requirement that the same program be executed in the high and low runs of SME.
Instead, we assume that a variant of the program that has been carefully crafted to use declas-
sified inputs (not the raw inputs) exists. This variant, called the low slice, is used in the low
run instead of the original program. The resulting paradigm is what we call asymmetric SME
or A-SME. Before delving into the details of A-SME and its semantics, we give an intuition for
the low slice.

Low slice

For a program p : Input×Memory 7→ [Output]×Memory, the low slice with respect to policy
D is a program pL : Declassified×Memory 7→ [Output]×Memory that produces the program’s
low outputs given as inputs values that have been declassified in accordance with policy D. In
other words, the low slice is the part of the program that handles only declassified data.

D

pL

π O|L

O|H

p

Figure 3.1: Factorization of program p into declassification policy D and low slice pL.

A question that arises is why this low slice should even exist? Intuitively, if the program
p is compliant with policy D, then its low outputs depend only on the output of the policy D.
Hence, semantically, p must be equivalent to a program that composes D with some other
function pL to produce low outputs (Figure 3.1). It is this pL that we call p’s low slice. We
formalize this intuition in Section 3.5 by proving that if the program p conforms to D (in a
formal sense), then pL must exist. However, note that the low slice pL may not be syntac-
tically extractable from the program p by any automatic transformation, in which case the
programmer’s help may be needed to construct pL.

In the next chapter, we describe an automatic program transformation that produces the
low slice for the case when the high inputs are assigned a default value, or when the declas-
sification policy blocks some inputs at runtime. Both cases are handled in the same way, by
using the optional value None as default value — when no declassification is used, and as value
returned by function π — when declassification is employed.

A-SME Semantics

A-SME enforces a declassification policy D over a program p and its low slice pL, together
called an A-SME-aware program, written (p, pL). The semantics of A-SME are defined by the
judgment I, s,µH ,µL Z=⇒D

p, pL
E (Figure 3.2), which should be read: “Starting in policy state



Chapter 3. Asymmetric Secure Multi-Execution (A-SME) 17

s and initial memories µH (for the high run) and µL (for the low run), the input sequence I
produces the run E under A-SME and policy D”.

[], s,µH ,µL Z=⇒D
p, pL

[]
A-SME-1

s′′ = updi(s, i) σ(s′′)= false

p(i,µH)= (O,µ′H) s′ = updo(s′′,O) I, s′,µ′H ,µL Z=⇒D
p, pL

E

i :: I, s,µH ,µL Z=⇒D
p, pL

(i,O|H) :: E
A-SME-2

s′′ = updi(s, i) σ(s′′)= true pL(π(s′′),µL)= (O′,µ′L)
p(i,µH)= (O,µ′H) s′ = updo(s′′,O) I, s′,µ′H ,µ′L Z=⇒D

p, pL
E

i :: I, s,µH ,µL Z=⇒D
p, pL

(i,O′|L++O|H) :: E
A-SME-3

Figure 3.2: Semantics of A-SME.

We define the judgment by induction on the input sequence I. Rule A-SME-1 is the base
case: When the input sequence I is empty, so is the run E (when there is no input, a reactive
program produces no output). Rules A-SME-2 and A-SME-3 handle the case where an input
is available. In both rules, the first available input, i, is given to the policy’s input update
function updi to obtain a new policy state s′′. Then, σ(s′′) is evaluated to determine whether
the input’s presence is high or low (rules A-SME-2 and A-SME-3, respectively).

If the input’s presence is high (rule A-SME-2), then only the high run is executed by in-
voking p with input i. The outputs O of this high run are used to update the policy state to
s′ (premise s′ = updo(s′′,O)). After this, the rest of the input sequence is processed inductively
(last premise). Importantly, any low outputs in O are discarded. The notation O|H denotes the
subsequence of O containing all outputs on high (protected or non public) channels.

If the input’s presence is low (rule A-SME-3), then, in addition to executing the high run
and updating the policy state as described above, the low slice pL is also invoked with the
current declassified value π(s′′) to produce outputs O′ and to update the low memory. Only the
low outputs in O′ (O′|L) are retained. All high outputs in O′ are discarded (those come from
the high run).

We depict the semantics of A-SME pictorially in Figure 3.3. The dashed arrows denote the
case where the input’s presence is low (A-SME-3). In that case, the low slice executes with the
declassified value returned by the policy function π. The arrow from the output O back to the
policy D represents the output feedback.

Next, we prove formally that A-SME is (1) secure — it enforces policies correctly and has no
false negatives (Section 3.3), and (2) precise — if pL is a correct low slice, then its observable
behavior does not change under A-SME (Section 3.4).
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D

p

pL

i

O

OL

i

π(·)

Figure 3.3: Pictorial representation of A-SME semantics.

Security

We prove security of A-SME by showing that a program running under A-SME satisfies a form
of noninterference. Roughly, this noninterference says that if we take two different input se-
quences that result in the same declassified values, then the low outputs of the two runs of the
program under A-SME are the same. In other words, the low outputs under A-SME are a func-
tion of the declassified values, so an adversary cannot learn more than the declassified values
by observing the low outputs. Importantly, the security theorem makes no assumption about
the relationship between p and pL, so security holds even if a leaky program or a program
that does not expect declassified values as inputs is provided as pL.

To formally specify our security criterion, we first define a function D∗ (Figure 3.4) that,
given an initial policy state s and a program run E, returns the sequence of values declassified
during that run.

D∗(s, [])= []

D∗(s, (i,O) :: E)=D∗(updo(s′′,O),E) if s′′ = updi(s, i) and σ(s′′)= false

D∗(s, (i,O) :: E)=π(s′′) :: D∗(updo(s′′,O),E) if s′′ = updi(s, i) and σ(s′′)= true

Figure 3.4: Function D∗ returns values declassified by policy D during a run.

Function D∗ is defined by induction on E and takes into account the update of the policy
state due to both inputs and outputs in E. It is similar to a homonym in the approach of Van-
hoef et al. [34], but adds policy state update due to outputs. Note that D∗ adds the declassified
value to the result only when the input presence is low (condition σ(s′′)= true). Equipped with
the function D∗, we state our security theorem.

Theorem 3 (Security, noninterference under D). Suppose I1,µ1 −→p E1 and I2,µ2 −→p E2 and
D∗(s1,E1) = D∗(s2,E2). If I1, s1,µ1,µL Z=⇒D

p, pL
E′

1 and I2, s2,µ2,µL Z=⇒D
p, pL

E′
2, then E′

1|o|L =
E′

2|o|L.

Proof. By induction on the length of I1++ I2. See Appendix A.1, Theorem 22 for details. ■
The theorem says that if for two input sequences I1, I2, the two runs E1, E2 of a program

p result in the same declassified values (condition D∗(s1,E1) = D∗(s2,E2)), then the program
run under A-SME on I1, I2 will produce the same low outputs (E′

1|o|L = E′
2|o|L), for any low

slice pL.
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Remark: Note that the precondition of the theorem is an equivalence on E1 and E2 obtained
by execution under standard (non-A-SME) semantics, but its postcondition is an equivalence
on E′

1 and E′
2 obtained by execution under A-SME semantics. This may look a bit odd at first

glance, but this is the intended and expected formulation of the theorem. The intuition is that
the theorem relates values declassified by the standard semantics to security of the A-SME
semantics.

Precision

In the context of SME, precision means that for a non-leaky program, outputs produced under
SME are equal to the outputs produced without SME. In general, SME preserves the order
of outputs at a given level, but may reorder outputs across levels. For instance, the rule A-
SME-3 in Figure 3.2 places all the low outputs O′|L before the high outputs O|H . So, following
prior work [34], we prove precision with respect to each level: We show that the sequence of
outputs produced at any level under A-SME is equal to the sequence of outputs produced at
the same level in the standard (non-A-SME) execution. Proving precision for high outputs is
straightforward for A-SME.

Theorem 4 (Precision for high outputs). For any programs p and pL, declassification policy
D with initial state s, and input list I, if I,µH −→p E and I, s,µH ,µL Z=⇒D

p, pL
E′, then E|o|H =

E′|o|H .

Proof. From the semantics in Figures 2.1 and 3.2 it can be observed that the high run of A-
SME mimics (in input, memory, and outputs) the execution under −→p. See Appendix A.2,
Theorem 23 for details. ■

To show precision for low outputs, we must assume that the low slice pL is correct with
respect to the original program p and the policy D. This assumption is necessary because
A-SME uses pL to produce the low outputs, whereas standard execution uses p to produce
them. Recall that the low slice pL is intended to produce the low outputs of p, given values
declassified by policy D. We formalize this intuition in the following correctness criteria for pL.

Definition 5 (Correct low slice/correct low pair). A program pL of type Declassified×Memory 7→
[Output]×Memory and an initial memory µL are called a correct low pair (and pL is called a
correct low slice) with respect to policy D, initial state s, program p, and initial memory µ if
for all inputs I, if I,µ−→p E and D∗(s,E)= R and R,µL −→pL E′, then E|o|L = E′|o|L.

Based on this definition, we can now prove precision for low outputs.

Theorem 6 (Precision for low outputs). For any programs p and pL, declassification policy D

with initial state s, and input list I, if I,µH −→p E and I, s,µH ,µL Z=⇒D
p, pL

E′ and (µL, pL) is a
correct low pair with respect to D, s, p, and µH , then E|o|L = E′|o|L.

The proof of this theorem relies on the following easily established lemma.

Lemma 7 (Low simulation). Let I, s,µH ,µL Z=⇒D
p, pL

E and D∗(s,E)= R. If R,µL −→pL E′, then
E|o|L = E′|o|L.
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Proof. By induction on I. Intuitively, the low run in A-SME is identical to the given run under
−→pL and the high run of A-SME does not contribute any low outputs. See Appendix A.2,
Lemma 24 for details. ■

Proof of Theorem 6. Let R =D∗(s,E′) and R,µL −→pL E′′. By Lemma 7, E′|o|L = E′′|o|L. From
Definition 5, E|o|L = E′′|o|L. By transitivity of equality, we get that E|o|L = E′|o|L. ■

Theorem 8 (Precision). For any programs p and pL, declassification policy D with initial state
s, and input list I, if I,µH −→p E and I, s,µH ,µL Z=⇒D

p, pL
E′, and (µL, pL) is a correct low pair

with respect to D, s, p and µH , then E|o|L = E′|o|L and E|o|H = E′|o|H .

Proof. Immediate from Theorems 4 and 6. ■

Existence of correct low slices

In this section we show that a correct low slice (more specifically, a correct low pair) of a
program exists if the program does not leak information beyond what is allowed by the declas-
sification policy.

Definition 9 (No leaks outside declassification). A program p starting from initial memory µ
does not leak outside declassification in policy D and initial state s if for any two input lists
I1, I2, if I1,µ−→p E1 and I2,µ−→p E2 and D∗(s,E1)=D∗(s,E2), then E1|o|L = E2|o|L.

Theorem 10 (Existence of correct low slice). If program p, starting from initial memory µ,
does not leak outside declassification in policy D and initial state s, then there exist pL and µL
such that (µL, pL) is a correct low pair with respect to D, s, p, and µ.

We describe a proof of this theorem. Fix an initial memory µ. Define f , g as follows: If
I,µ−→p E, then f (I)= E|o|L and g(I)=D∗(s,E). Then, Definition 9 says that f (I) is a function
of g(I), meaning that there exists another function h such that f (I)= h(g(I)). Intuitively, for a
given sequence of declassification values R =D∗(s,E), h(R) is the set of low outputs of p.

For lists L1,L2, let L1 ≤ L2 denote that L1 is a prefix of L2.

Lemma 11 (Monotonicity of h). If I1 ≤ I2, then h(g(I1))≤ h(g(I2)).

Proof. By definition, h(g(I1)) = f (I1) and h(g(I2)) = f (I2). So, we need to show that f (I1) ≤
f (I2). Let µ, I1 −→p E1 and µ, I2 −→p E2. Since I1 ≤ I2, E1|o|L ≤ E2|o|L, i.e., f (I1)≤ f (I2). ■

We now construct the low slice pL using h. In the execution of pL, the low memory µ′L at
any point is the list of declassified values R that have been seen so far. We define:

µL = []
pL(r,R) = (h(R :: r)\ h(R),R :: r).

If R is the set of declassified values seen in the past, to produce the low output for a new
declassified value r, we simply compute h(R :: r)\ h(R). By Lemma 11, h(R)≤ h(R :: r) when R
and R :: r are declassified value lists from the same run of p, so h(R :: r)\ h(R) is well-defined.
We then prove the following lemma, which completes the proof.
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Lemma 12 (Correctness of construction). (µL, pL) defined above is a correct low pair for D, s,
p, and µ if p, starting from initial memory µ, does not leak outside declassification in D and
initial state s.

Proof. See Appendix A.3, Lemma 29 for details. ■

A-SME vs. SME and its variants

In this section, we compare some of the fine points of A-SME with prior work on SME. We often
refer to the schemas of Figure 3.5, which summarizes several flavors of SME described in the
literature.
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(a) Plain SME [16], 2010.
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(b) Reactive SME [8], 2011.
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(c) Fine-grained SME [28], 2013.
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(d) SME with stateful declassifica-
tion policies [34], 2014.

p

H

π+ r

pL

L

D

D

(e) Our A-SME, 2016.

Figure 3.5: Flavors of SME from literature. Red denotes information at level H, blue denotes
information at level M, and black denotes information at level L. d is a default value provided
to the low run when it demands an input of higher classification.

Input presence levels. SME was initially designed by Devriese et al. [16] to enforce non-
interference on sequential programs, not reactive programs (Figure 3.5a). They implicitly
assume that all inputs are low presence. Thus, there are only two kinds of inputs—low con-
tent/low presence (denoted L) and high content/low presence. Following the approach of Rafns-
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son et al. [27], we call the latter “medium”-level or M-level inputs, reserving high (H) for inputs
with high presence.

Bielova et al. [8] adapted SME for enforcing noninterference in a reactive setting. Though
not explicitly mentioned in their paper, their approach assumes that an input’s presence and
content are classified at the same level. Consequently, in their work, inputs only have levels H
and L (Figure 3.5b). Bielova et al. also introduce the idea that for an input with high presence
(level H), the low run must not be executed at all and we, as well as Vanhoef et al. [34] use
this idea. In Bielova et al.’s work, an input’s presence level is fixed by the channel on which
it appears; this static assignment of input presence levels carries into all subsequent work,
including that of Vanhoef et al. and of Rafnsson and Sabelfeld [28, 29]. Our work relaxes this
idea and permits input presence to depend on policy state.

Input totality. Rafnsson and Sabelfeld (Figure 3.5c) consider all three input levels—L, M,
and H—for sequential programs with I/O. In their setup, programs demand inputs and can
time how long they wait before an input is available. This allows a conceptual distinction be-
tween environments that can always provide inputs on demand and environments that cannot.
In an asynchronous reactive setting like ours, that of Vanhoef et al., or that of Bielova et al.,
this distinction is not useful.

Declassification and SME. Early work on SME, including that of Devriese et al. [16] and
Bielova et al. [8], did not consider declassification. Rafnsson and Sabelfeld [28, 29] and Van-
hoef et al. [34] added support for declassification in the non-reactive and reactive setting, re-
spectively. In the former approach, the declassification policies have two components: a coarse-
grained policy ρ specifies the flows allowed between levels statically and is enforced with SME;
a fine-grained mechanism allows the high run of the program to declassify data to the low run
dynamically. This mechanism routes data from a special M-level output of the high run to
an M-level input of the low run. This routing is called the release channel and is denoted by
π+ r in Figure 3.5c. Data on the release channel is not monitored by SME and the security
theorem for such release is the standard gradual release condition [2], which only says that
declassification happens at explicit declassification points of the high run, without capturing
what is released very precisely. For instance, if Example 4 (see Section 2.4) were implemented
in the framework of Rafnsson and Sabelfeld, the only formal security guarantee we would get
is that any function of the mouse clicks might have been declassified (which is not useful in
this example).

In contrast, the security theorem of Vanhoef et al., like ours, captures the declassified infor-
mation at fine granularity. Their policies declassify high inputs using two different functions—
a stateless projection function project, which specifies both the presence level of an input and
a declassified value, and a stateful release function release that can be used to declassify ag-
gregate information about past inputs. The output of the projection function (denoted π in
Figure 3.5d) is provided as input to the low run in place of the high input. The decision to pass
a projected value to the low run where a high input is normally expected results in the prob-
lems mentioned in the overview section of this chapter (Section 3.1), which motivated us to
design A-SME. The output of the release function (denoted r) is passed along a release chan-
nel similar to the one in Rafnsson and Sabelfeld. We find the use of two different channels
redundant and thus we combine release and project into a single policy function that we call π.
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Going beyond the approach of Vanhoef et al., in A-SME, the policy state may depend on pro-
gram output and the input presence may depend on policy state. As illustrated in Chapter 2,
this allows for richer declassification policies.

Totality of the monitored program. Similar to Vanhoef et al., we assume that the (re-
active) program being monitored is total and terminates in a finite amount of time. This
rules out leaks due to the adversary having the ability to observe lack of progress, also called
progress-sensitivity [1, 23]. In contrast, Rafnsson and Sabelfeld do not make this termina-
tion assumption. Instead, they (meaningfully) prove progress-sensitive noninterference. This
is nontrivial when the adversary has the ability to observe termination on the low run, as a
scheduler must be chosen carefully. We believe that the same idea can be applied to both the
work of Vanhoef et al. and our work if divergent behavior is permitted.

Related work

Secure multi-execution. We discussed prior work on SME in the previous section. Here,
we mention some other work on related techniques. Khatiwala et al. [19] propose data sand-
boxing, a technique which partitions the program into two slices, a private slice containing the
instructions handling sensitive data, and a public slice that contains the remaining instruc-
tions and uses system call interposition to control the outputs. The public slice is very similar
to our low slice, but Khatiwala et al. trust the low slice’s correctness for security of enforce-
ment, while we do not. Nonetheless, we expect that the slicing method used by Khatiwala et
al. to construct the public slice can be adapted to construct low slices for use with A-SME.

Capizzi et al. [10] introduce shadow executions for controlling information flow in an oper-
ating system. They suggest running two copies of an application with different sets of inputs:
a public copy, with access to the network, that is supplied dummy values in place of the user’s
confidential data, and a private copy, with no access to the network, that receives all confiden-
tial data from the user.

Zanarini et al. [37] introduce multi-execution monitors, a combination of SME and monitor-
ing, aimed at reporting any actions that violate a security policy. The multi-execution monitor
runs a program in parallel with its SME-enforced version. If the execution is secure, the two
programs will run in sync, otherwise, when one version performs an action different from the
other, the monitor reports that the program is insecure. However, no support for declassifica-
tion is provided.

Faceted and sensitive values. Faceted values [5] are a more recent, dynamic mechanism
for controlling information flow. They are inspired by SME, but reduce the overhead of SME
by simulating the effect of multiple runs in a single run. To do this, they maintain values for
different levels (called facets) separately. For a two-level lattice, a faceted value is a pair of
values. Declassification corresponds to migrating information from the high facet to the low
facet. We expect that in A-SME, the use of the low slice in place of the original program in
the low run will result in a reduction of overhead (over SME), comparable to that attained by
faceted values.

Jeeves [36] is a new programming model that uses sensitive values for encapsulating a
low- and a high-confidentiality view for a given value. Like faceted values, sensitive values are
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pairs of values. They are parameterized with a level variable which determines the view of the
value that should be released to any given sink. Jeeves’ policies are represented as declarative
rules that describe when a level variable may be set high or low. The policies ensure data
confidentiality, but offer no support for declassification. An extension of Jeeves with faceted
values [6] can enforce more expressive declassification policies, but output feedback is still not
supported.

(Stateful) Declassification policies enforcement mechanisms. As already mentioned
in the related work section of the former chapter (Section 2.5), several previous approaches
already described methods for enforcing (stateful) declassification policies. However, most of
these are static enforcements via type-systems [9, 11, 12, 13, 21, 33], which do not apply in the
reactive/dynamic setting of browsers or mobile applications, which are the focus of this thesis.

Generic black-box enforcement. Recently, Ngo et al. [26] have shown that black-box tech-
niques based on multi-execution can be used to enforce not just noninterference and declas-
sification policies, but a large subset of what are called hyperproperties [14]. They present a
generic construction for enforcing any property in this subset. Superficially, their construction
may look similar to A-SME, but it is actually quite different. In particular, their method would
enforce noninterference by choosing a second input sequence that results in the same declas-
sified values as the given input sequence to detect if there is any discrepancy in low outputs.
A-SME does not use such a construction and is closer in spirit to traditional SME.



Program transformation

This chapter describes an automatic program transformation based on an information flow
type system that generates a low slice in the case when the declassification policy blocks some
(high) inputs at runtime, or when the (high) inputs are replaced by default values. Section 4.1
gives a short overview of the program transformation, Section 4.2 presents the program syntax
and semantics, and Section 4.3 introduces the information flow type system. In Section 4.4 we
discuss the transformation in more detail, while in Section 4.5 we prove its type-soundness
and correctness. We conclude with Section 4.6 by mentioning some related work in the area.

Overview

Security policies or techniques that enforce them, such as SME, can block access to data, thus
preventing an application from receiving certain inputs. Using dummy values such as 0 or
null to replace the sensitive inputs can prove unfortunate in some cases. Thus, in order to
prevent an application from misbehaving (crashing or producing erroneous results), we suggest
to replace the dummy values with the optional value None and to modify the program to handle
correctly the new inputs. An optional value is similar to a variable that holds either a value,
or no value. (More details in Section 4.4.) Similarly, the behavior of policy D blocking some
inputs at runtime is represented by function π evaluating to None for those inputs whose value
is not to be revealed.

The idea of the transformation we propose is to take a source program, assign an Option
type (which encapsulates an optional value) to the volatile inputs (inputs for which the system
or the policy might return None), and, by tracking how these inputs affect the computation,
modify the source program, and return a target program. The program transformation lever-
ages an information flow type system for a dependence analysis. The analysis precisely tracks
which intermediate outputs are influenced by the inputs assigned None and, as a result, the
transformation returns a target program (low slice) robust to missing inputs.

Briefly, the program transformation follows four steps. In the first step, the programmer
assigns label L to the types of the non-volatile inputs, i.e. inputs for which an initial value is
always present at runtime, and label H to the types of the volatile inputs. We would like to note
that the labels L and H do not necessarily represent security levels that detect illegal flows of
information (even though, in this case, the labeling might be confounded with the one made
by policy D), but merely the prospect of an input to not be available during runtime, which
can possibly disrupt the normal execution of the program. In the second step, we propagate
labels L and H throughout the program by means of a flow-sensitive type system. In the third
step, we remove the labels from the L-labeled types and, transform the H-labeled types into

25
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(non-labeled) Option types. In the fourth and final step, the actual low slice (target program)
is obtained by means of a type-directed transformation.

The first two steps are necessary for proving transformation type-soundness and correct-
ness. Type-soundness means well-typedness preservation, i.e. if the source program type-
checks to some labeled type, then the target program type-checks to a non-labeled type related
to the labeled type. Correctness means that the source and target programs are functionally
equivalent, i.e. evaluating the source and target programs under equivalent complete memo-
ries returns equivalent values. (A memory is complete if values are provided for all volatile
inputs.) Finally, we prove that the transformation is monotone, i.e. executing the target pro-
gram on more precise inputs (with fewer Nones) yields more precise outputs.

Syntax and semantics

In the previous chapters we considered the programs to be black-boxes and did not introduce
any specific syntax for them. In this chapter, however, we have to deal with label propagation
and for this reason we need to take a closer look at the program structure and make explicit
assumptions about it.

We consider a while-language extended with a label upgrade operator • (Figure 4.1a).
This operator has no computational effect on the expression e it precedes (rule E-UPGRADE in
Figure 4.1b), its only purpose is to upgrade from L to H the label of expression e’s type. In
Section 4.3 we will explain in more detail the role of this operator and the intuition behind it.

As usual, n ranges over integers, l ranges over memory locations, x ranges over variables,
and ⊕ ranges over arithmetic operations on expressions. µ is a map from memory locations l
and variables x to values v. (It is also possible to have the store for locations separated from
the environment for variables. Using a single store µ for both memory locations and variables
was simply our design choice.)

Sequence and if-expressions can be encoded in the language, as illustrated below:

e1; e2 ≡ let x = e1 in e2, x 6∈FV(e2)
if e then e1 else e2 ≡ case e of inl _. e1 inr _. e2

where FV(e2) denotes the set of free variables in expression e2.
As can be seen from the semantic rules in Figure 4.1b, the conditional of the while expres-

sion has no side effects. However, this does not make our language less expressive, as a regular
while expression while e1 do e2 can also be represented as x := e1;while x do {e2; x := e1}.

Label propagation

As we already mentioned, the first step in performing the translation is labeling the inputs’
types, or labeling the typing environment: we label each type with labels H or L, depending
on whether the corresponding memory location is marked as volatile or not1. For example, if

1Unlike in Chapter 3, in this chapter we do not explicitly consider the program to be invoked sequentially on a
list of inputs. We assume locations are ‘assigned’ in the initial memory for all the ‘expected’ inputs, be they volatile
or not. If no value is provided for a volatile input, then the corresponding memory location remains empty, with ⊥
denoting no value is assigned to that location.
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Values v ::= n | inl v | inr v | ()
Expressions e ::= v | l | x | e⊕ e | l := e | let x = e1 in e2 | inl e | inr e

(case e of inl x. e1 inr x. e2) | while x do e | •e

(a) Syntax.

E-VAL

〈v,µ〉 ⇓ 〈v,µ〉

E-VAR
x ∈ dom(µ)

〈x,µ〉 ⇓ 〈µ(x),µ〉

E-VARLOC
l ∈ dom(µ)

〈l,µ〉 ⇓ 〈µ(l),µ〉

E-EXP
〈e1,µ〉 ⇓ 〈n1,µ1〉 〈e2,µ1〉 ⇓ 〈n2,µ2〉

〈e1 ⊕ e2,µ〉 ⇓ 〈n1 ⊕n2,µ2〉
E-ASSIGN

〈e,µ〉 ⇓ 〈v,µ′〉
〈l := e,µ〉 ⇓ 〈(),µ′[l 7→ v]〉

E-INL
〈e,µ〉 ⇓ 〈v,µ′〉

〈inl e,µ〉 ⇓ 〈inl v,µ′〉

E-INR
〈e,µ〉 ⇓ 〈v,µ′〉

〈inr e,µ〉 ⇓ 〈inr v,µ′〉
E-LET

〈e1,µ〉 ⇓ 〈v1,µ1〉
〈e2,µ1 ∪ {x 7→ v1}〉 ⇓ 〈v2,µ2〉

〈let x = e1 in e2,µ〉 ⇓ 〈v2,µ2\{x}〉

E-CASE-INL
〈e,µ〉 ⇓ 〈inl v,µ′〉 〈e1,µ′∪ {x 7→ v}〉 ⇓ 〈v1,µ1〉

〈case e of inl x. e1 inr x. e2,µ〉 ⇓ 〈v1,µ1\{x1}〉
E-CASE-INR
〈e,µ〉 ⇓ 〈inr v,µ′〉 〈e2,µ′∪ {x 7→ v}〉 ⇓ 〈v2,µ2〉

〈case e of inl x. e1 inr x. e2,µ〉 ⇓ 〈v2,µ2\{x2}〉

E-WHILE-TRUE
µ(x) 6= 0 〈e;while x do e,µ〉 ⇓ 〈v,µ′〉

〈while x do e,µ〉 ⇓ 〈v,µ′〉
E-WHILE-FALSE

µ(x)= 0

〈while x do e,µ〉 ⇓ 〈(),µ〉

E-UPGRADE
〈e,µ〉 ⇓ 〈v,µ′〉
〈•e,µ〉 ⇓ 〈v,µ′〉

(b) Evaluation rules.

Figure 4.1: Program’s syntax and semantics.

memory location l contains a volatile integer, then its type becomes IntH . A typing environ-
ment Γ is a mapping from memory locations l and variables x to labeled types τ (Figure 4.2).

Base types b ::= Int | Unit
Types σ ::= b | τ1 +τ2
Labeled types τ ::= σ`

Figure 4.2: Syntax of labeled types τ.

We assume the typing environment Γ to be well-formed: Γ contains at most one occurrence
of each memory location l and variable x. To preserve well-formedness, variables are renamed
tacitly before they are added to the typing environment.

Using a flow-sensitive type system (Figure 4.3), we propagate the labels throughout the
program. Although designed for different reasons, the flow-sensitive type system of Hunt and
Sands [17] represents the backbone of our type system. We preserve their idea of using two
typing environments in the judgment, a fixed one as a reference for typing and a mutable one
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INT

pc`Γ{n : IntL}Γ

UNIT

pc`Γ{() : UnitL}Γ

VAR
Γ(x)= τ

pc`Γ{x : τ}Γ

VARLOC
Γ(l)= τ

pc`Γ{l : τ}Γ

EXP

pc`Γ{e1 : Int`}Γ1 pc`Γ1{e2 : Int`}Γ2

pc`Γ{e1 ⊕ e2 : Int`}Γ2

ASSIGN

pc`Γ{e :σ`}Γ′

pc`Γ{l := e : UnitL}Γ′[l 7→σpct`]

INL
pc`Γ{e : τ1}Γ′

pc`Γ{inl e : (τ1 +τ2)L}Γ′

INR
pc`Γ{e : τ2}Γ′

pc`Γ{inr e : (τ1 +τ2)L}Γ′

LET
pc`Γ{e : τ}Γ′

pc`Γ′, x : τ{e′ : τ′}Γ′′

pc`Γ{let x = e in e′ : τ′}Γ′′ \{x}

CASE

pc`Γ{e : (τ1 +τ2)`}Γ′ pct``Γ′, x : τi{e i :σ`
′
}Γi `v `′

pc`Γ{(case e of inl x. e1 inr x. e2) :σ`
′
}
⊔
Γi\{x}

WHILE

Γ(x)= Int` pct``Γ{e : τ}Γ

pc`Γ{while x do e : UnitL}Γ

UPGRADE

pc`Γ{e :σL}Γ′

pc`Γ{•e :σH}Γ′

Figure 4.3: Flow-sensitive typing rules.

returned at the end of typing. The typing judgment pc`Γ{e : τ}Γ′, where pc ∈ {L,H}, should be
read: “Given typing environment Γ and program context pc, expression e types to labeled type
τ and returns (a possibly updated) typing environment Γ′”.

Both typing environments are needed in order to keep track of the change in information
flow. As in previous work, the security context pc tracks the control flow dependencies of the
program counter. The memory locations have mutable types and this allows their labels to
change depending on the pc and on the labels of the expressions assigned. For example, in
a high context, all low variables and memory locations that could be redefined get upgraded
to a high-labeled type. Similarly, in a low context, all high variables assigned a constant or a
non-volatile expression get downgraded to a low type, becoming non-volatile as well.

Mutable labels make all (implicit or explicit) flows possible and from this point of view,
our type system is more permissive than the usual flow-insensitive type systems for secure
information flow [30, 35]. A typical information flow type system disallows any flow from high
to low, as it would be considered a leak. However, we remind the reader that, in our setting,
high and low do not necessarily have the security meaning, they are merely used to distinguish
between and track information that is always present at runtime (L) and information that may
be missing at runtime (H).

In the following, we discuss the most interesting typing rules and provide arguments to
support our design choices.
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Rule CASE. Rule CASE ensures that the typing context returned at the end of typing is the
same in both branches, no matter which branch was taken at runtime. More specifically, if a
label upgrade takes place in one branch of the case expression and this upgrade is not observed
in the other branch, the type system ensures that the resulting typing environment preserves
the label upgrade. The following example illustrates this idea:

Example 8. Consider the context Γ = {(x,IntL), (y,IntL), (z,IntH)}. Typing the program bel-
low under initial environment Γ:

if x then

y := 2z;
else

z := z+ x;

will return the typing environment Γ′ = {(x,IntL), (y,IntH), (z,IntH)}.

Rule WHILE. The requirement to have the same typing environment at the beginning, as
well as at the end of typing, might seem a bit restrictive. However, this constraint is needed in
order to prove transformation correctness (Theorem 17).

Rule UPGRADE. The intuition for the upgrade operator • will become clear in the following
section (see Example 10). For now, we only mention that the operator is needed to ensure that,
in a high context, the values in the RHS of an assignment always have a high-labeled type.

Summary. In brief, when designing the information flow type system for label propagation,
we impose several requirements: (1) Assigning in a low context a low variable to a high one
downgrades the high variable; (2) Assigning in any context a high variable to a low one up-
grades the low variable. In particular, upgrading is allowed when branching on low. Addition-
ally, downgrading is not allowed when branching on high.

Type-directed transformation

We use the label propagation in the previous section (Figure 4.3) to translate an expression
with a labeled type into an expression with a non-labeled type. In particular, an expression
with an H-labeled type translates into an expression with a non-labeled Option type.

An Option type is a polymorphic union type that encapsulates an optional value. It consists
of either an empty constructor None (e.g., to denote that function π has assigned no value to the
volatile input), or a constructor which encapsulates the original data type T, written Some T
(e.g., to denote that, for the volatile input, function π returns a value of type T). Hence for a
type T, Option(T), Unit+T. Additionally, None and Some e are syntactic sugar for inl () and
inr e respectively.

Syntax and semantics

The syntax and semantics of a target program are almost the same as for the source program
(Figure 4.1), thus we do not present them again in this section. However, we do discuss the
small differences between the two syntaxes. (1) The target program shows no occurrences of
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the upgrade operator •; this can also be deduced from the rules of the type-directed translation,
Figure 4.6. (2) The guard of a while expression can have side effects, thus the syntax for the
while expression is while e1 do e2. The two rules E-WHILE-TRUE and E-WHILE-FALSE for
evaluating a while expression change accordingly, as shown in Figure 4.4.

E-WHILE-TRUE
〈ē1, µ̄〉 ⇓ 〈v̄1, µ̄1〉 v̄1 6= 0 〈ē2;while ē1 do ē2, µ̄1〉 ⇓ 〈v̄2, µ̄2〉

〈while ē1 do ē2, µ̄〉 ⇓ 〈v2, µ̄2〉

E-WHILE-FALSE
〈ē1, µ̄〉 ⇓ 〈0, µ̄1〉

〈while ē1 do ē2, µ̄〉 ⇓ 〈(), µ̄1〉

Figure 4.4: Semantics of while expression in the target program.

Type syntax

The types of the target language have no labels, thus they exhibit a slightly different syntax
than that of the labeled types (Figure 4.5).

b ::= Int | Unit
τ̄ ::= b | τ̄1 + τ̄2

Figure 4.5: Non-labeled type syntax.

Target type system

Since label-free types are used for typing a target program, the type system for verifying its
soundness has several differences from the one for typing a source program in Figure 4.3. The
typing judgment we use is Í Γ{e : τ̄}Γ′ and should be read as: “Target program e, under label-
free typing environment Γ, types to label-free type τ̄ and returns (a possibly updated) label-free
typing environment Γ′”.

One difference already noticeable from the typing judgment is the absence of program
counter pc. In the type system for the target program, there are no labels, so tracking the pc
is irrelevant.

Another notable difference is visible in rule N-CASE, where we require the contexts after
typing of expressions e i (i = 1,2) to be the same:

ÍΓ{e : τ1 +τ2}Γ′ ÍΓ′, x : τi{e i : τ}Γ′′, x : τi i = 1,2

ÍΓ{case e of inl x. e1 inr x. e2 : τ}Γ′′
N-CASE

Since in the target language, the while expression has a slightly different semantics than
in the source language, its type rule in the target type system will also be different than the
corresponding rule in the source type system:

ÍΓ{e1 : Int}Γ ÍΓ{e2 : τ̄}Γ

ÍΓ{while e1 do e2 : Unit}Γ
N-WHILE

The other rules are analogous and we do not write them here. The complete target type
system is shown in Appendix B.1.
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Type transformation

We use operator �·� to obtain from a labeled type τ a non-labeled type τ̄. The high-labeled types
drop their label and transform to Option types, while the low-labeled types are simply stripped
from their label:

�σ�,
{

b if σ= b
�τ1�+�τ2� if σ= τ1 +τ2.

�τ�,
{
�σ� if τ=σL

Option(�σ�) if τ=σH .

Typing environment transformation

We extend the transformation operator �·� to typing environments. Thus, for a context Γ, �Γ�
represents the typing environment with the same domain as Γ and where all types have been
de-labeled according to the rules above. More formally,

�Γ�, {(l,�τ�) | (l,τ) ∈Γ}.

Memory transformation

Since the (high-labeled) types of the volatile memory locations translate to an Option type, this
modification needs to be reflected in the translated memory as well. We extend the operator
�·� to memories and annotate it with a context Γ:�

µ
�
Γ, {(l,�v�τ) | (l,v) ∈µ∧ (l,τ) ∈Γ}∪ {(l,None) | (l,⊥) ∈µ}.

We assume memory µ to be well-typed with typing environment Γ, meaning that each value
v in µ is well typed under Γ and Γ has the same domain as µ, i.e. dom(Γ)= dom(µ).

The memory transformation says that if no value is provided for a volatile memory location
l (⊥ was ‘assigned’ to location l), then None is assigned instead to that memory location. Oth-
erwise, assuming value v of type τ is provided, then the location in the transformed memory
will contain the transformed value �v�τ. Thus,

�
µ
�
Γ is a total function from memory locations

l to transformed values �v�τ.

Value transformation

Similarly to memory transformation, the value transformation is annotated with a type and
follows the rules below:

�v�bL , v
�v�σH , Some �v�σL

�inl v�(τ1+τ2)L , inl �v�τ1

�inr v�(τ1+τ2)L , inr �v�τ2

It can be easily shown that the type of a transformed value corresponds to the type obtained
by applying the de-labeling operator �·� to the initial type of the value.

Lemma 13 (Type preservation of value transformation). If pc` ·{v : τ}·, then Í ·{�v�τ : �τ�}·.

Proof. By induction on the structure of v. The proof is trivial and we do not include it here. ■
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Type-directed transformation

The type-directed transformation takes an expression with a labeled type and returns an ex-
pression with a non-labeled type. The rules for the translation are presented in Figure 4.6. The
judgment pc ` Γ{e : τ ē}Γ′ says that “Given typing environment Γ and program context pc,
source program e types to τ, translates to target program ē, and returns a (possibly updated)
typing environment Γ′”.

In the following paragraphs we discuss some of the rules in the transformation we consider
need more clarification.

Transformation of case-expression. The transformation of case expression corresponds
to two rules in the type-directed translation, as the label of the conditional can be either L or
H, depending on whether there was a flow from a volatile input to the conditional or not.

If the label is L (rule T-CASE-L), then there was no such flow and this means that the
conditional will always evaluate to an ‘existing’ value (or ‘some’ value). The transformation
proceeds as follows: we recursively transform the sub-expressions e1 and e2 into ē1 and ē2,
and, in addition, we upgrade in one branch all the memory locations updated solely in the
other branch:

case ē of inl x. let y= ē1 in upgrade(S2); y inr x. let y= ē2 in upgrade(S1); y

ē is the translation of the conditional and S1 and S2 are sets of memory locations stati-
cally determined. S1 (respectively S2) contains all the memory locations (to be) updated in e1
(respectively e2), but not in e2 (respectively e1). Function upgrade(S) alters the memory µ by
assigning an optional value to each memory location in S, i.e. for all l ∈ S, µ(l) := Some µ(l).

Operator \ defines the high complement of a typing environment Γ2 with respect to another
typing environment Γ1. Assuming Γ1 and Γ2 have the same domain, Γ1\Γ2 returns the memory
locations which have a high-labeled type in Γ1, but a low-labeled type in Γ2. More formally,

Γ1 \Γ2, {l | (l,σH) ∈Γ1 ∧ (l,σL) ∈Γ2}.

If the label of the conditional is high (rule T-CASE-H), then there was an information flow
from a volatile input to the conditional. If this input is missing at runtime, the conditional
evaluates to None and the target program assigns None to all the memory locations modified
in any branch. If the conditional does not evaluate to None, meaning that some values were
given for the volatile inputs influencing the conditional, then the transformation proceeds as
for rule T-CASE-L:

case ē of None. (∀l ∈ updated(ē1, ē2). l := None);None
case ē of Some x′. case x′ of inl x. let y= ē1 in upgrade(S2); y
case ē of Some x′. case x′ of inr x. let y= ē2 in upgrade(S1); y

Function updated(e) is a syntactic function that takes as argument a list of expressions and
returns an over-approximated list of memory locations that may be modified in e.

For the case when the value of the conditional is None, as at least one of the volatile inputs
which tainted the conditional was missing, we make the following comment: the conditional
does not evaluate to an existing value, so how should we know which of the two branches to
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T-VAL

pc`Γ{v : τ v}Γ

T-VAR
Γ(x)= τ

pc`Γ{x : τ x}Γ

T-VARLOC
Γ(l)= τ

pc`Γ{l : τ l}Γ

T-EXP-H

pc`Γ{e1 : IntH ē1}Γ1 pc`Γ1{e2 : IntH ē2}Γ2

pc`Γ{e1 ⊕ e2 : IntH 
pc`Γ{let x = ē1 in let y= ē2 in

pc`Γ{ case x of None. None Some x′. (case y of None. None Some y′. Some (x′⊕ y′))}Γ2

T-EXP-L

pc`Γ{e1 : IntL ē1}Γ1 pc`Γ1{e2 : IntL ē2}Γ2

pc`Γ{e1 ⊕ e2 : IntL ē1 ⊕ ē2}Γ2

T-ASSIGN

pc`Γ{e :σ` ē}Γ′ pcv `

pc`Γ{l := e : UnitL l := ē}Γ′[l 7→σ`]

T-INL
pc`Γ{e : τ1 ē}Γ′

pc`Γ{inl e : (τ1 +τ2)L inl ē}Γ′

T-INR
pc`Γ{e : τ2 ē}Γ′

pc`Γ{inr e : (τ1 +τ2)L inr ē}Γ′

T-LET
pc`Γ{e1 : τ1 ē1}Γ1 pc`Γ1, x : τ1{e2 : τ2 ē2}Γ2

pc`Γ{let x = e1 in e2 : τ2 let x = ē1 in ē2}Γ2 \{x}

T-CASE-H

pc`Γ{e : (τ1 +τ2)H ē}Γ′ H `Γ′, x : τi{e i : τ ē i}Γi i = 1,2 S1 =Γ1 \Γ2 S2 =Γ2 \Γ1

pc`Γ{case e of inl x. e1 inr x. e2 : τ 
pc`Γ{case ē of None. (∀l ∈ updated(ē1, ē2). l := None); None
pc`Γ{case ē of Some x′. case x′ of inl x. let y= ē1 in upgrade(S2); y
pc`Γ{case ē of Some x′. case x′ of inr x. let y= ē2 in upgrade(S1); y}

⊔
Γi \{x}

T-CASE-L

pc`Γ{e : (τ1 +τ2)L ē}Γ′ pc`Γ′, x : τi{e i : τ ē i}Γi i = 1,2 S1 =Γ1 \Γ2 S2 =Γ2 \Γ1

pc`Γ{case e of inl x. e1 inr x. e2 : τ 
pc`Γ{case ē of inl x. let y= ē1 in upgrade(S2); y inr x. let y= ē2 in upgrade(S1); y

⊔
Γi \{x}

T-WHILE-H

Γ(x)= IntH H `Γ{e : τ ē}Γ

pc`Γ{while x do e : UnitL while (case x of None. (∀l ∈ updated(ē). l := None; ) 0 Some y. y) do ē}Γ

T-WHILE-L

Γ(x)= IntL pc`Γ{e : τ ē}Γ

pc`Γ{while x do e : UnitL while x do ē}Γ

T-UPGRADE

pc`Γ{e :σL ē}Γ′

pc`Γ{•e :σH Some ē}Γ′

Figure 4.6: Type-directed transformation.
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execute? We decide to not execute any of them and to assign instead None to all the memory
locations and variables further influenced by this conditional. The value None we return after
the set of assignments is to preserve the Option type of the target program.

Transformation of while-expression. The execution of a while expression also depends
on a branch condition, hence, for its transformation we introduce two rules as well (T-WHILE-L

and T-WHILE-H), one for each of the possible labels of the conditional. If the label is L, the
transformation proceeds as expected (rule T-WHILE-L), with a recursive transformation of the
sub-expression e. However, things are less obvious if the label of the conditional is H.

Naïve approach. If the label is H, then the conditional must have been influenced by a volatile
input and the transformed condition must have an Option type. A naïve transformation of the
loop with high guard would be to follow the model of the rule T-CASE-H — first case analyze
the condition, and second execute the loop body, as depicted in the following flawed rule:

T-WHILE-H-WRONG

Γ(x)= IntH H `Γ{e : τ ē}Γ

pc`Γ{while x do e : UnitL 
pc`Γ{case x of None. ∀l ∈ updated(ē). l := None; Some y. while y do ē}Γ

The rule is obviously broken, as an upgrade of the conditional in the loop body in a high
context might lead to problems when re-evaluating the loop, especially if the high context is
influenced by an input for which no value was provided. To be more specific, consider the
following example:

Example 9. Assume the initial typing environment is Γ = {(x,IntH), (y,IntH)} and the ini-
tial memory is defined such that x 6= 0 and y evaluates to None. Further, assume the source
program is the one bellow:

while x do

if y then

x := •0;
else

. . .

If the target program is obtained following the transformation suggested by rule T-WHILE-
H-WRONG, then trying to evaluate the loop guard the second time will not be possible. After
the first iteration, x will be assigned None, as its value is influenced by the volatile y.

The type system should take into account any such changes, and, hence, the correct rule
for the transformation of the loop with high guard should be:

T-WHILE-H

Γ(x)= IntH H `Γ{e : τ ē}Γ

pc`Γ{while x do e : UnitL 
pc`Γ{while (case x of None. (∀l ∈ updated(ē). l := None; ) 0 Some y. y) ē}Γ

It is easy to notice that the problem raised by the previous example is now fixed and the
target program successfully type-checks.
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Similar to rule T-CASE-H, in rule T-WHILE-H, we assign None to all the memory locations
and variables redefined in the loop when the conditional evaluates to None. However, instead
of returning None after the set of assignments, we return 0 (zero). The intuition behind this is
that if the guard evaluates to None, then the loop should behave as if the guard evaluated to 0
(with the additional ‘erasure’ of the redefined memory locations).

Upgrade operator

Now that the type system for the transformation was presented and the most unintuitive rules
were explained, we can give an intuition for the upgrade operator • by means of an example.

Example 10. Consider the following two programs and assume Γ(x) = IntH . Additionally,
pc= H in the second program:

(a) if x then 1 else 0 (b) x := 2

Since values are typed low (rules INT and UNIT), the value returned by the if expression
(in the first example) and the value assigned to x (in the second example) will also be labeled
low. However, since the programs are executed in a high context, the translated version of
program (a) should return Some 1 or Some 0 if x is not None. Similarly, in example (b), as x will
be given an Option type in the transformed memory, its value after the assignment should also
reflect the new type.

We introduce the upgrade operator • and leave to the programmer the task to insert it
in all the right places. To prevent her from skipping any required annotation, we add rule
UPGRADE to the type system (Figure 4.3) and, as a consequence, the type-checking will not
succeed unless the operator was inserted in all expected places. Hence, the ‘corrected’ and
type-sound source programs from the previous example will be (a) if x then •1 else •0 and
(b) x := •2.

Transformation type-soundness and correctness

In this section we prove that our transformation is type-sound and semantically correct. In
addition, we show that the transformation is also monotone.

Transformation type-soundness

Type-soundness means that if the source program is typed, then the target program is also
typed. More specifically, if the source program e types at τ in Γ and returns typing environment
Γ′, then its corresponding target program ē types at de-labeled type �τ� in �Γ� and returns
typing environment

�
Γ′

�
. The following theorem formalizes this statement.

Theorem 14 (Type-soundness). For any source program e, typing environment Γ, and program
context pc, if pc ` Γ{e : τ}Γ′ then there exists target program ē such that pc ` Γ{e : τ ē}Γ′ and
Í �Γ� {ē : �τ�}�Γ′�.

Proof. By induction on the structure of type-directed transformation. See Appendix B.2, The-
orem 31 for details. ■
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Transformation correctness

Informally, the transformation is correct if the value v to which the source program evalu-
ates to given complete memory µ is equivalent to the value returned by the target program
when evaluated under the transformed memory

�
µ
�
Γ. We represent the equivalence relation

between values in Figure 4.7, while in Definition 15 we extend it to stores.

n ∼IntL n n ∼IntH Some n ()∼UnitL ()

v ∼τ1 v̄

inl v ∼(τ1+τ2)L inl v̄

v ∼τ1 v̄

inl v ∼(τ1+τ2)H Some inl v̄

v ∼τ2 v̄

inr v ∼(τ1+τ2)L inr v̄

v ∼τ2 v̄

inr v ∼(τ1+τ2)H Some inr v̄

Figure 4.7: Value type-equivalence.

Definition 15 (Store equivalence). Two stores µ and µ̄ are equivalent with respect to a typing
environment Γ, written µ ∼Γ µ̄, iff dom(µ) = dom(µ̄) = dom(Γ) and for all memory locations l
(and variables x), µ(l)∼Γ(l) µ̄(l).

Lemma 16 (Helper). For any complete memory µ and typing context Γ, µ∼Γ
�
µ
�
Γ.

Proof. By induction on the size of µ and from Lemma 13. The proof is trivial and we do not
include it here. ■

Theorem 17 (Correctness, equivalence between source and target programs). For any source
program e, typing environment Γ, program context pc, and store µ, if pc ` Γ{e : τ ē}Γ′ and
〈e,µ〉 ⇓ 〈v f ,µ f 〉, then there exists v̄ f and µ̄ f , such that 〈ē,

�
µ
�
Γ〉 ⇓ 〈v̄ f , µ̄ f 〉 and v f ∼τ v̄ f and

µ f ∼Γ′ µ̄ f .

Proof. From Lemma 16 and by induction on the derivation of the evaluation relation. See
Appendix B.3, Theorem 34 for details. ■

Transformation monotonicity

We use the value equivalence relation in Figure 4.7 to specify when a value v is ‘more precise’
than a target value v̄ (Figure 4.8). And, similarly to value equivalence, we extend the relation
to memories in Definition 18.

v ∼τ v̄

v ≥τ v̄ v ≥σH None

Figure 4.8: v is more precise than v̄.
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Definition 18 (More precise store.). A store µ is more precise than a store µ̄ with respect to
a typing environment Γ, written µ ≥Γ µ̄, iff dom(µ) = dom(µ̄) = dom(Γ) and, for all memory
locations l, µ(l)≥Γ(l) µ̄(l).

It is trivial to show now that the value to which a source program evaluates to is more
precise than the value to which its corresponding target program evaluates to.

Theorem 19 (Source program more precise). For any source program e, typing environment
Γ, program context pc, and stores µ and µ̄ such that µ ≥Γ µ̄, if pc ` Γ{e : τ ē}Γ′ and 〈e,µ〉 ⇓
〈v f ,µ f 〉, then there exists v̄ f and µ̄ f , such that 〈ē, µ̄〉 ⇓ 〈v̄ f , µ̄ f 〉 and v f ≥τ v̄ f and µ f ≥Γ′ µ̄ f .

Proof. By induction on the structure of the type-directed transformation. See Appendix B.3,
Theorem 35 for details. ■

Similarly to the ‘more precise than’ relation between values in Figure 4.8, we define a
‘more precise than’ relation between target values in Figure 4.9, and we extend it to stores in
Definition 20.

v̄ ≥ v̄ Some v̄ ≥ None

v̄ ≥ v̄′

inl v̄ ≥ inl v̄′
v̄ ≥ v̄′

inr v̄ ≥ inl v̄′

Figure 4.9: Target value v̄ is more precise than target value v̄′.

Definition 20 (More precise target store.). A target store µ̄ is more precise than a target store
µ̄′ iff dom(µ̄)= dom(µ̄′) and, for all memory locations l, µ̄(l)≥ µ̄′(l).

Finally, we prove that the transformed program is monotone, i.e. executing the target pro-
gram with a more precise store (with fewer Nones) yields more precise outputs. More specif-
ically, we prove that evaluating the target program under memories µ̄ and, respectively, µ̄′,
satisfying the property that µ̄ is more precise than µ̄′ (µ̄≥ µ̄′), returns values v̄ f and memory
µ̄ f , respectively, v̄′f and memory µ̄′f satisfying the properties that v̄ f ≥ v̄′f and µ̄ f ≥ µ̄′f .

Theorem 21 (Monotonicity of ē). For any source program e, typing context Γ, program counter
pc, and memories µ̄, and µ̄′ such that pc ` Γ{e : τ ē}Γ′, and µ̄ ≥ µ̄′, if 〈ē, µ̄〉 ⇓ 〈v̄ f , µ̄ f 〉 and
〈ē, µ̄′〉 ⇓ 〈v̄′f , µ̄′f 〉, then v̄ f ≥ v̄′f and µ̄ f ≥ µ̄′f .

Proof. By induction on the derivation of the type-directed transformation and on the derivation
of the evaluation relation. See Appendix B.3, Theorem 37 for details. ■

Related work

Program transformation. Hunt and Sands [17] design a flow-sensitive type system for
program transformation that constructs a target program equivalent with the source program
which can be typed using a simple flow-insensitive type system. Our type system in Figure 4.3
is inspired by the one in Hunt and Sands’ work. However, the transformations and their
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purposes are quite different: the approach of Hunt and Sands is relevant in a proof-carrying-
code setting [17], while our approach aims to make a program robust to missing data.

A program transformation method was earlier suggested by Lam and Chiueh [20], although
not by means of a type system, but by using a compiler-based approach. In the context of dy-
namic taint analyses, Lam and Chiueh propose the GIFT (General dynamic Information Flow
Tracking) compiler to automatically add code to propagate and check tags associated with data.
Their compiler performs an automated program transformation on C code: it takes C programs
and programmer-specified rules for tag manipulation and automatically inserts wrapper func-
tions in order to ensure that the rules are enforced by the program execution. GIFT uses
dynamic data and control flow analysis and automates the process of implementing informa-
tion flow tracking into individual applications. Similarly to our approach where, depending on
which inputs are labeled high, different program transformations are possible, in GIFT, the
same program can be instrumented differently when used in different applications or systems,
in a way that it matches their corresponding security requirements.

Label propagation. Several previous approaches perform label propagation based on infor-
mation flow type systems [24, 25, 38, 39], while other methods suggest using labeling seman-
tics [4, 15]. Costanzo and Shao [15] use a security-aware operational semantics for propagating
labels. Similarly to our approach, they allow for label overwriting, but, in their case, the la-
bel is attached to the value, and not to the memory location. Their functions mark_vars(σ,C)
and modifies(C) have a similar effect as the functions upgrade(S) and updated(e) we define.
While their approach is used for enforcing declassification policies, we believe that a similar
operational semantics can also be adapted to make a program robust to missing data.



Conclusion

In this thesis, we focused on improving secure multi-execution (SME) and its extension with
declassification, by presenting Asymmetric SME (A-SME), a modification of SME that gives up
on the pretense that real programs are inherently robust to modified inputs. A-SME executes
a program and its low slice simultaneously to enforce a broad range of declassification policies.
We prove that A-SME is secure, independent of the correctness of the low slice, and also precise
if the low slice is semantically correct. Moreover, we show that A-SME does not result in
loss of expressiveness: If the original program conforms to the declassification policy, then
a correct low slice exists. Additionally, we improve the expressive power of declassification
policies considered in literature by allowing feedback from the program, and by allowing input
presence sensitivity to depend on policy state. Finally, assuming the program can be typed with
an information flow type system, we describe an automatic technique based on an information
flow type system for obtaining the low slice in the case when policy D blocks some inputs at
runtime. We prove that the resulting low slice is correct and preserves type correctness, and
that the transformation is monotone.

Future work

A-SME can be generalized to arbitrary security lattices. For each lattice level `, a separate
projection function π` could determine the values declassified to the `-run in A-SME. For `v `′,
π` should reveal less information than π`′ , i.e. there should exist some function f such that
π` = f ◦π`′ . Additionally, A-SME would require a different slice of the program for every level `.

Another interesting direction for future work would be to develop an analysis either to ver-
ify the correctness of a low slice, or to automatically construct the low slice from a program and
a policy (in cases more general than those of Chapter 4). Verification will involve establishing
semantic similarity of the composition of the low slice and the policy with a part of the pro-
gram, which can be accomplished using static methods for relational verification. Automatic
construction of the low slice should be feasible using program slicing techniques, at least in
some cases.

Viewed from a different perspective, the program transformation can be seen as rewriting
a computation with no side effects into a computation that produces side effects. Transforming
the high types to Option types encapsulates the use of Option monad. For the Option monad
the side effect is represented by the program failing to produce a value of type T and returning
instead value None. Different monads express different side effects, such as reading or writing
memory, or throwing an exception. As future work, it would be interesting to explore whether
the transformation could be generalized to arbitrary monads, by rewriting the target type
system to use only the monadic operations bind and return.
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Proofs for the results of A-SME

Security of A-SME

Theorem 22 (Security, noninterference under D). Suppose I1,µ1 −→p E1 and I2,µ2 −→p
E2 and D∗(s1,E1) = D∗(s2,E2). If I1, s1,µ1,µL Z=⇒D

p, pL
E′

1 and I2, s2,µ2,µL Z=⇒D
p, pL

E′
2, then

E′
1|o|L = E′

2|o|L.

Proof. Let n be the length of I1++ I2. The proof is by induction on n.

Base case: n = 0. Then I1 = I2 = [], which implies E′
1 = E′

2 = [] and E′
1|o|L = E′

2|o|L.

Inductive step: n > 0. Then either I1 6= [] or I2 6= []. We assume I1 6= [] (the other case is
symmetric). As I1 is not empty, it must contain at least one element, thus I1 = i1 :: I ′1.

Let s′′1 = updi(s1, i1), b1 =σ(s′′1), (O1,µ′1)= p(i1,µ1), s′1 = updo(s′′1,O1), and E1 = (i1,O1) :: E′′
1,

where I ′1,µ′1 −→p E′′
1. We case analyze b1:

Case: b1 = false
Then D∗(s1,E1) = D∗(s′1,E′′

1) = D∗(s2,E2). E′
1 = (i1,O1|H) :: E′′′

1 , where I ′1, s′1,µ′1,µL Z=⇒D
p, pL

E′′′
1 . From the i.h., E′′′

1 |o|L = E′
2|o|L. Since O1|H |L = [], E′

1|o|L = E′
2|o|L.

Case: b1 = true
Then D∗(s1,E1)= r1++D∗(s′1,E′′

1)=D∗(s2,E2), where r1 =π(s′′1). This means that I2 must
be non-empty. Let I2 = i2 :: I ′2, s′′2 = updi(s2, i2), b2 =σ(s′′2), (O2,µ′2)= p(i2,µ2), s′2 = updo(s′′2,O2),
and E2 = (i2,O2) :: E′′

2, where I ′2,µ′2 −→p E′′
2.

If b2 = false, we apply an argument symmetric to the one for b1 = false. In the following,
we discuss the more interesting case, b2 = true. D∗(s2,E2) = r1 :: D∗(s′2,E′′

2), thus π(s′′2) = r1.
Hence (O,µ′L)= pL(π(s′′1),µL)= pL(r1,µL)= pL(π(s′′2),µL).

For j ∈ {1,2}, E′
j = (i j,O|L :: O j|H) :: E′′′

j , where I ′j, s
′
j,µ

′
j,µ

′
L Z=⇒D

p, pL
E′′′

j . From the i.h.,
E′′′

1 |o|L = E′′′
2 |o|L. Thus E′

1|o|L = E′
2|o|L. ■

Precision of A-SME

Theorem 23 (Precision for high outputs). For any programs p and pL, declassification policy
D with initial state s, and input list I, if I,µH −→p E and I, s,µH ,µL Z=⇒D

p, pL
E′, then E|o|H =

E′|o|H .

Proof. The proof is by induction on I.

Base case: I = []. Then E = E′ = [], hence E|o|H = E′|o|H = [].

41
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Induction step: I = i :: I ′. Let s′′ = updi(s, i), b =σ(s′′), (O,µ′H)= p(i,µH), and s′ = updo(s′′,O).
We case analyze b:

Case: b = false
Then E = (i,O) :: E′′, where I ′,µ′H −→p E′′ (from rule R2) and E′ = (i,O|H) :: E′′′ (from rule

A-SME-2), where I ′, s′,µ′H ,µL Z=⇒D
p, pL

E′′′.
From the i.h. applied to I ′, we get E′′|o|H = E′′′|o|H . Hence, E|o|H = ((i,O) :: E′′)|o|H =

O|H ++E′′|o|H =O|H ++E′′′|o|H = ((i,O|H) :: E′′′)|o|H = E′|o|H .

Case: b = true
Let (O′,µ′L) = pL(r,µL). Then E = (i,O) :: E′′, where I ′,µ′H −→p E′′ (from rule R2) and

E′ = (i,O|H ++O′|L) :: E′′′ (from A-SME-3), where I ′, s′,µ′H ,µ′L Z=⇒D
p, pL

E′′′.
From the i.h. applied to I ′, we get E′′|o|H = E′′′|o|H . Hence, E|o|H = ((i,O) :: E′′)|o|H =

O|H ++E′′|o|H =O|H ++E′′′|o|H = ((i,O|H ++O′|L) :: E′′′)|o|H = E′|o|H . ■
Lemma 24 (Low simulation). Let I, s,µH ,µL Z=⇒D

p, pL
E and D∗(s,E)= R. If R,µL −→pL E′, then

E|o|L = E′|o|L.

Proof. By induction on I.

Base case: I = []. Then, E = R = E′ = [] and E|o|L = []= E′|o|L.

Induction step: I = i :: I ′. Let s′′ = updi(s, i), b =σ(s′′), (O,µ′H) = p(i,µH) and s′ = updo(s′′,O).
We case analyze b:

Case: b = false
Then, from rule A-SME-2, E = (i,O|H) :: E′′, where I ′, s′,µ′H ,µL Z=⇒D

p, pL
E′′. From the defi-

nition of D∗, R =D∗(s,E)=D∗(s′′,E′′).
Applying the i.h. to I ′/I, s′/s, E′′/E, µ′H /µH but the same E′, R, and µL, we get E′′|o|L =

E′|o|L. Hence, E|o|L = ((i,O|H) :: E′′)|o|L = E′′|o|L = E′|o|L.

Case: b = true
Let (O′,µ′L) = pL(r,µL). Then E = (i,O|H ++O′|L) :: E′′ (from rule A-SME-3), where

I ′, s′,µ′H ,µ′L Z=⇒D
p, pL

E′′. From the definition of D∗, R =D∗(s,E) = r :: D∗(s′′,E′′) = r :: R′ (where
R′ =D∗(s′′,E′′)). From rule R2, E′ = (r,O′) :: E′′′, where R′,µ′L −→p E′′′.

Applying the i.h. to I ′/I, s′/s, E′′/E, E′′′/E′, µ′H /µH , R′/R, and µ′L/µL, we get E′′|o|L = E′′′|o|L.
Hence, E|o|L = ((i,O|H ++O′|L) :: E′′)|o|L = O′|L++E′′|o|L = O′|L++E′′′|o|L = ((r,O′) :: E′′′)|o|L =
E′|o|L. ■
Theorem 25 (Precision for low outputs). For any programs p and pL, declassification policy
D with initial state s and input list I, if I,µH −→p E and I, s,µH ,µL Z=⇒D

p, pL
E′ and (µL, pL) is

a correct low pair with respect to D, s, p and µH , then E|o|L = E′|o|L.

Proof. Let R =D∗(s,E′) and suppose R,µL −→pL E′′. By Lemma 24, E′|o|L = E′′|o|L. By Defini-
tion 5, E|o|L = E′′|o|L. Therefore, E|o|L = E′′|o|L = E′|o|L. ■
Theorem 26 (Precision). For any programs p and pL, declassification policy D with initial
state s and input list I, if I,µH −→p E and I, s,µH ,µL Z=⇒D

p, pL
E′, and (µL, pL) is a correct low

pair with respect to D, s, p and µH , then E|o|L = E′|o|L and E|o|H = E′|o|H .

Proof. Immediate from Theorems 23 and 25. ■
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Existence of correct low slices

Given a program p, we abuse notation and write p(I,µ) to denote the final memory obtained
by executing the input sequence I starting from µ. Formally,

p([],µ) = µ

p(i :: I,µ) = let (_,µ′)= p(i,µ) in p(I,µ′).

Similarly, we write upd(s,E) to denote the final state of the policy obtained by updating s
repeatedly with the elements of E. Formally,

upd(s, []) = s
upd(s, (i,O) :: E) = upd(updo(updi(s, i),O),E).

Lemma 27 (Execution factorization). Let I1 and I2 be two input lists such that I1++ I2,µ−→p
E and I1,µ−→p E1 and µ1 = p(I1,µ) and I2,µ1 −→p E2. Then E = E1++E2.

Proof. By induction on I1.

Base case: I1 = []. Here, E1 = [], I1++ I2 = I2 and µ1 = p([],µ) = µ. Hence, we know that
(a) I2,µ −→p E and (b) I2,µ −→p E2. Since evaluation is deterministic, E = E2 = []++E2 =
E1++E2.

Induction step: I1 = i1 :: I ′1. Let p(i1,µ) = (O1,µ′) and suppose that I ′1++ I2,µ′ −→p E′ and
I ′1,µ′ −→p E′

1. Note that µ1 = p(I1,µ) = p(i1 :: I ′1,µ) = p(I ′1,µ′) by definition of p. Hence, by the
i.h. applied to I ′1, we know that E′ = E′

1++E2. Further, by definition of −→p, E1 = (i1,O1) :: E′
1

and E = (i1,O1) :: E′. Hence, E1++E2 = ((i1,O1) :: E′
1)++E2 = (i1,O1) :: (E′

1++E2) = (i1,O1) ::
E′ = E. ■
Lemma 28 (Update factorization). Let I1 and I2 be two input lists such that I1++ I2,µ−→p E
and I1,µ −→p E1 and µ1 = p(I1,µ) and I2,µ1 −→p E2. Then D∗(s,E1++E2) = D∗(s,E1)++
D∗(upd(s,E1),E2).

Proof. By induction on E1.

Base case: E1 = []. Then
D∗(s,E1++E2)=D∗(s, []++E2)

=D∗(s,E2)
= []++D∗(s,E2)
=D∗(s, [])++D∗(upd(s, []),E2)
=D∗(s,E1)++D∗(upd(s,E1),E2).

Induction step: E1 = (i,O) :: E′
1. Let s′′ = updi(s, i), b = σ(s′′) and s′ = updo(s′′,O). We case

analyze b:

Case: b = false
D∗(s,E1++E2)=D∗(s, (i,O) :: (E′

1++E2))
=D∗(s′,E′

1++E2) (b = false, definition of D∗)
=D∗(s′,E′

1)++D∗(upd(s′′,E′
1),E2) (i.h.)

=D∗(s, (i,O) :: E′
1)++D∗(upd(s′′,E′

1),E2) (b = false, definition of D∗)
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=D∗(s,E1)++D∗(upd(s′′,E′
1),E2)

=D∗(s,E1)++D∗(upd(updo(s′,O),E′
1),E2)

=D∗(s,E1)++D∗(upd(updo(updi(s, i),O),E′
1),E2)

=D∗(s,E1)++D∗(upd(s, (i,O) :: E′
1),E2) (Definition of upd)

=D∗(s,E1)++D∗(upd(s,E1),E2).

Case: b = true
D∗(s,E1++E2)=D∗(s, (i,O) :: (E′

1++E2))
= r :: D∗(s′′,E′

1++E2, s′′) (b = true, definition of D∗)
= r :: D∗(s′′,E′

1)++D∗(upd(s′′,E′
1),E2) (i.h.)

=D∗(s, (i,O) :: E′
1)++D∗(upd(s′′,E′

1),E2) (b = true, definition of D∗)
=D∗(s,E1)++D∗(upd(s′′,E′

1),E2)
=D∗(s,E1)++D∗(upd(updo(s′,O),E′

1),E2)
=D∗(s,E1)++D∗(upd(updo(updi(s, i),O),E′

1),E2)
=D∗(s,E1)++D∗(upd(s, (i,O) :: E′

1),E2) (Definition of upd)
=D∗(s,E1)++D∗(upd(s,E1),E2). ■

Lemma 29 (Correctness of construction). (µL, pL) as defined in Section 3.5 is a correct low pair
for D, s, p and µ if p, starting from initial memory µ, does not leak outside declassification in
D and initial state s.

Proof. Let I,µ−→p E and D∗(s,E)= R and R,µL −→pL E′. We need to prove that E|o|L = E′|o|L.
We proceed by induction on I, but in reverse order.

Base case: I = []. Then E = R = E′ = [], hence E|o|L = E′|o|L = [].

Induction step: I = I1 :: i. Let E1, µ1, and O2 be such that I1,µ−→p E1 (1), µ1 = p(I1,µ) (2),
and i,µ1 −→p (i,O2) (3).

From Lemma 27 applied to I,µ−→p E and statements (1)–(3) above, we get that E = E1 ::
(i,O2) (4).

Let s1 = upd(s,E1) and R1 = D∗(s,E1). From Lemma 28 applied to statement (4), we get
R =D∗(s,E)= R1++D∗(s1, (i,O2)) (5).

Let s′1 = updi(s1, i) and b =σ(s′1). We case analyze b:

Case: b = false
By definition of D∗, D∗(s1, (i,O2)) = []. Thus, from (5) and the definition of R1, we get

R =D∗(s,E)= R1++[]= R1 =D∗(s,E1).
From the i.h. applied to I1/I,E1/E using statement (1) and the assumption R,µL −→pL E′,

we get E1|o|L = E′|o|L. Since (µ, p) does not leak outside declassification in D and initial state
s, and D∗(s,E)=D∗(s,E1), we also get E1|o|L = E|o|L. Hence, E|o|L = E1|o|L = E′|o|L.

Case: b = true
By definition of D∗, D∗(s1, (i,O2)) = [r]. Thus, from (5) and the definition of R1, we get

R =D∗(s,E)= R1++[r]= R1 :: r =D∗(s,E1) :: r. We choose E′
1,µL1,O′

2 such that R1,µL −→pL E′
1

(6), µL1 = pL(R1,µL) (7), and r,µL1 −→pL (r,O′
2) (8).

Since R = R1 :: r, by Lemma 27 applied to R,µL −→pL E′ and (6)–(8), we get that E′ = E′
1 ::

(r,O′
2) (9).

Applying i.h. to (1), (6), and the definition R1 = D∗(s,E1), we get E1|o|L = E′
1|o|L. Hence

using (4) and (9) it suffices to prove O2|L = O′
2|L. For this, we first note that pL(R1,µL) =
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pL(R1, [])= R1 (from definitions of µL and pL). Hence µL1 = R1 (from (7)) and r,R1 −→pL (r,O′
2)

(from (8)). Expanding the definition of −→pL , (O′
2,_)= pL(r,R1)= (h(R1 :: r)\ h(R1),R1 :: r).

Thus,O′
2 = h(R1 :: r) \ h(R1) = h(R) \ h(R1) = h(D∗(s,E)) \ h(D∗(s,E1)) = h(g(I)) \ h(g(I1)) =

f (I)\ f (I1) (10).
Further, from (4), O2|L = E|o|L \ E1|o|L. From the assumption I,µ−→p E, E|o|L = f (I) and

from (1), E1|o|L = f (I1). Thus O2|L = f (I) \ f (I1). Combining with (10), we get O′
2 = O2|L.

Hence, O′
2|L =O2|L|L =O2|L, as needed. ■





Proofs for the program transforma-
tion

Type system for target program

N-INT

ÍΓ{n : Int}Γ

N-UNIT

ÍΓ{() : Unit}Γ

N-VAR

Γ(x)= τ̄
ÍΓ{x : τ̄}Γ

N-VARLOC

Γ(l)= τ̄
ÍΓ{l : τ̄}Γ

N-EXP

ÍΓ{e1 : Int}Γ1 ÍΓ1{e2 : Int}Γ2

ÍΓ{e1 ⊕ e2 : Int}Γ2

N-ASSIGN

ÍΓ{e : τ̄}Γ′

ÍΓ{l := e : Unit}Γ′[l 7→ τ̄]

N-INL

ÍΓ{e : τ̄1}Γ′

ÍΓ{inl e : τ̄1 + τ̄2}Γ′

N-INR

ÍΓ{e : τ̄2}Γ′

ÍΓ{inr e : τ̄1 + τ̄2}Γ′

N-LET

ÍΓ{e : τ̄}Γ′ ÍΓ′, x : τ̄{e′ : τ̄′}Γ′′

ÍΓ{let x = e in e′ : τ̄′}Γ′′ \{x}

N-CASE

ÍΓ{e : τ̄1 + τ̄2}Γ′ ÍΓ′, x : τ̄i{e i : τ̄}Γ′′, x : τ̄i i = 1,2

ÍΓ{case e of inl x. e1 inr x. e2 : τ̄}Γ′′

N-WHILE

ÍΓ{e1 : Int}Γ ÍΓ{e2 : τ̄}Γ

ÍΓ{while e1 do e2 : Unit}Γ

Figure B.1: Typing rules for target program.

Transformation type-soundness

Lemma 30 (Context weakening). If ÍΓ{ē : τ̄}Γ′ and x 6∈ dom(Γ), then ÍΓ, x : τ̄x{ē : τ̄}Γ′, x : τ̄x.

Proof. By induction on the structure of the typing derivation. The proof is standard and we do
not include it here. ■
Theorem 31 (Type-soundness). For any source program e, typing environment Γ, and program
context pc, if pc ` Γ{e : τ}Γ′ then there exists target program ē such that pc ` Γ{e : τ ē}Γ′ and
Í �Γ� {ē : �τ�}�Γ′�.

The proof of this theorem relies on the following helper lemma.

47
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Lemma 32 (Helper). For any source program e and typing environment Γ, if H `Γ{e : τ ē}Γ′

then Í �Γ� {∀l ∈ updated(ē). l := None;0 : Int}
�
Γ′

�
.

Proof. By induction on the structure of e.

Case: e = v. Then H ` Γ{v : τ v}Γ and updated(v) = ;. Hence Í �Γ� {∀l ∈ updated(v). l :=
None;0 : Int}�Γ�.
Case: e = x. Then H ` Γ{x : Γ(x) x}Γ and updated(x) = ;. Hence Í �Γ� {∀l ∈ updated(x). l :=
None;0 : Int}�Γ�.
Case: e = l. Then H ` Γ{l : Γ(l) l}Γ and updated(l) = ;. Hence Í �Γ� {∀l ∈ updated(l). l :=
None;0 : Int}�Γ�.
Case: e = e1 ⊕ e2. From rule T-EXP-*, updated(ē) = updated(ē1, ē2). From i.h., Í �Γ� {∀l ∈
updated(ē1). l := None;0 : Int}�Γ1� and Í �Γ1� {∀l ∈ updated(ē2). l := None;0 : Int}�Γ2�. Hence
Í �Γ� {∀l ∈ updated(ē1, ē2). l := None;0 : Int}�Γ2�.
Case: e = l := e′. From rule T-ASSIGN, updated(ē) = updated(ē′, l). From i.h., Í �Γ� {∀l′ ∈
updated(ē).l′ := None;0 : Int}

�
Γ′

�
. As ` = H,

�
σH� = Option(�σ�). Hence Í �

Γ′
�

{l := None :
Unit}

�
Γ′

�
[l 7→ Option(�σ�)].

Case: e = inl e′. From rule T-INL, updated(ē)= updated(ē′). From i.h., Í �Γ� {∀l ∈ updated(ē′). l :=
None;0 : Int}

�
Γ′

�
. Hence Í �Γ� {∀l ∈ updated(inl ē′). l := None;0 : Int}

�
Γ′

�
.

Case: e = inr e′. Similar to the previous case.

Case: e = let x = e1 in e2. From rule T-LET, updated(ē)= updated(ē1, ē2). From i.h., Í �Γ� {∀l ∈
updated(ē1). l := None;0 : Int}�Γ1� and Í �Γ1� , x : �τ1� {∀l ∈ updated(ē2). l := None;0 : Int}�Γ2�.
As x 6∈ updated(ē2), Í �Γ1� {∀l ∈ updated(ē2). l := None;0 : Int}�Γ2� \ {x}. Hence Í �Γ� {∀l ∈
updated(ē1, ē2). l := None;0 : Int}�Γ2�\{x}.

Case: case e′ of inl x. e1 inr x. e2. From rule T-CASE-*, updated(ē)= updated(ē′, ē1, ē2). But
updated(ē i)= S∪Si, where S denotes the set of memory locations updated in both branches ē1
and ē2. Hence updated(ē)= updated(ē′)∪S∪S1 ∪S2.

From i.h., Í �Γ� {∀l ∈ updated(ē′). l := None;0 : Int}
�
Γ′

�
and Í �

Γ′
�

, x : �τi� {∀l ∈ updated(ē i). l :=
None;0 : Int}�Γi�. Using the relation above, we get that

Í �
Γ′

�
{∀l ∈ S∪S1. l := None;0 : Int}�Γ1�\{x1}

Í �
Γ′

�
{∀l ∈ S∪S2. l := None;0 : Int}�Γ2�\{x2}

Hence Í Γ′{∀l ∈ S ∪ S1 ∪ S2. l := None;0 : Int}Γ′′ for some Γ′′. It remains to show that
Γ′′ = �⊔Γi \{x}�.

Let high(Γ) be the set of all memory locations with a high type in Γ and low(Γ) be the set of
all memory locations with low type in Γ. Then,⊔

Γi \{x} = (Γ1 \{x})t (Γ2 \{x})
= (high(Γ1 \{x})∩ low(Γ2 \{x}))∪ (high(Γ2 \{x})∩ low(Γ1 \{x}))∪

(high(Γ1 \{x})∩high(Γ2 \{x}))∪ (low(Γ1 \{x})∩ low(Γ2 \{x}))
= S1 ∪S2 ∪S∪ (low(Γ1 \{x})∩ low(Γ2 \{x}))

Hence
�
Γ′′

�= �⊔Γi \{x}�.
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Case: while x do e′. From rule T-WHILE-*, updated(ē) = updated(ē′). From i.h., Í �Γ� {∀l ∈
updated(ē′). l := None;0 : Int}�Γ�. Hence Í �Γ� {∀l ∈ updated(ē). l := None;0 : Int}�Γ�.
Case: e = •e′. From rule T-UPGRADE, updated(ē)= updated(ē′). From i.h. Í �Γ� {∀l ∈ updated(ē′). l :=
None;0 : Int}

�
Γ′

�
. Hence Í �Γ� {∀l ∈ updated(ē). l := None;0 : Int}

�
Γ′

�
. ■

Proof of Theorem 31. By induction on the structure of type-directed transformation pc ` Γ{e :
τ ē}Γ′.

Case: T-VAL. From rule N-VAL and τ=σL.

Case: T-VAR. From typing environment transformation and rule N-VAR.

Case: T-VARLOC. From typing environment transformation and rule N-VARLOC.

Case: T-EXP-L. From i.h. applied to pc ` Γ{e1 : IntL  ē1}Γ1 and, respectively pc ` Γ1{e2 :
IntL ē2}Γ2, we get that Í �Γ� {ē1 : Int}�Γ1� and, respectively, Í �Γ1� {ē2 : Int}�Γ2�. By apply-
ing rule N-EXP we obtain the desired result:

Í �Γ� {ē1 : Int}�Γ1� Í �Γ1� {ē2 : Int}�Γ2�
Í �Γ� {ē1 ⊕ ē2 : Int}�Γ2�

N-EXP

Case: T-EXP-H. From i.h. applied to pc ` Γ{e1 : IntH  ē1}Γ1 and pc ` Γ1{e2 : IntH  ē2}Γ2,
we get that Í �Γ� {ē1 : Option(Int)}�Γ1� and Í �Γ1� {ē2 : Option(Int)}�Γ2�. The desired result
follows from the derivation in Figure B.2.

Case: T-ASSIGN. From i.h. applied to pc ` Γ{e : τ ē}Γ′, we get that Í �Γ� {ē : �τ�}�Γ′�. By
applying rule N-ASSIGN we obtain the desired result:

Í �Γ� {ē : �τ�}�Γ′�
Í �Γ� {l := ē : Unit}

�
Γ′

�
[l 7→ �τ�] N-ASSIGN

Case: T-INL. From i.h. applied to pc ` Γ{e : τ1  ē}Γ′, we get that Í �Γ� {ē : �τ1�}
�
Γ′

�
. By

applying rule N-INL we obtain the desired result:

Í �Γ� {ē : �τ1�}
�
Γ′

�
Í �Γ� {inl ē : �τ1�+�τ2�}

�
Γ′

� N-INL

Case: T-INR. Similar to case T-INL.

Case: T-LET. From i.h. applied to pc ` Γ{e1 : τ1 ē1}Γ1 and, respectively, pc ` Γ1, x : τ1{e2 :
τ2 ē2}Γ2, we get that Í �Γ� {ē1 : �τ1�}�Γ1� and, respectively, Í �Γ1� , x : �τ1� {ē2 : �τ2�}�Γ2�. By
applying rule N-LET we obtain the desired result:

Í �Γ� {ē1 : �τ1�}�Γ1� Í �Γ1� , x : �τ1� {ē2 : �τ2�}�Γ2�
Í �Γ� {let x = ē1 in ē2 : �τ2�}�Γ2�\{x}

N-LET

Case: T-CASE-L. From i.h. applied to pc ` Γ{e : (τ1 +τ2)L ē}Γ′ and, respectively, pc ` Γ′, x :
τi{e i : τ ē i}Γi, we get that Í �Γ� {ē : �τ1� + �τ2�}

�
Γ′

�
and, respectively, Í �

Γ′
�

, x : �τi� {ē i :
�τ�}�Γi�, for i = 1,2.
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Í �Γ� {ē1 : Option(Int)}
�
Γ1

�
Í �

Γ1
�

{ē2 : Option(Int)}
�
Γ2

�
Í �

Γ1
�

, x : Option(Int){ē2 : Option(Int)}Γ′2
LEM. 30

Γ′′2(x)= Option(Int)

ÍΓ′′2{x : Option(Int)}Γ′′2
N-VAR

ÍΓ′′2, x′ : Unit{None : Option(Int)}Γ′′2, x′ : Unit
N-VAL

Γ′′2(y)= Option(Int)

ÍΓ′′2, x′ : Int{y : Option(Int)}Γ′′2, x′ : Int
N-VAR

ÍΓ′′2, x′ : Int{None : Option(Int)}Γ′′2, x′ : Int
N-VAL

Γ′′′2 (x′)= Int

ÍΓ′′′2 {x′ : Int}Γ′′′2
N-VAR

Γ′′′2 (y′)= Int

ÍΓ′′′2 {y′ : Int}Γ′′′2
N-VAR

ÍΓ′′2, x′ : Int, y′ : Int{x′⊕ y′}Γ′′2, x′ : Int, y′ : Int
N-EXP

ÍΓ′′2, x′ : Int, y′ : Int{Some (x′⊕ y′)}Γ′′2, x′ : Int, y′ : Int
N-INR

`Γ′′2, x′ : Int{case y of None. None
`Γ′′2, x′ : Int{case y of Some y′. Some (x′⊕ y′) : Option(Int)}Γ′′2, x′ : Int

N-CASE

ÍΓ′′2{case x of None. None
`Γ′′2{case x of Some x′. case y of None. None Some y′. Some (x′⊕ y′) : Option(Int)}Γ′′2

N-CASE

Í �
Γ1

�
, x : Option(Int){let y= ē2 in

`Γ1, x : Option(Int){ case x of None. None
`Γ1, x : Option(Int){ case x of Some x′. case y of None. None Some y′. Some (x′⊕ y′) : Option(Int)}Γ′2

N-LET

Í �Γ� {let x = ē1 in let y= ē2 in

`Γ{ case x of None. None Some x′. (case y of None. None Some y′. Some (x′⊕ y′)) : Option(Int)}
�
Γ2

� N-LET

where Γ′2 = �Γ2� , x : Option(Int), Γ′′2 =Γ′2, y : Option(Int), Γ′′′2 =Γ′′2, x′ : Int, y′ : Int.

Figure B.2: Concluding derivation, case T-EXP-H, Theorem 31.

Í �Γ� {ē : �τ1�+�τ2�}
�
Γ′

�

Í �
Γ′

�
, x : �τ1� {ē1 : �τ�}�Γ1�

Í �Γ1� , y : �τ� {upgrade(S2) : Unit}Γ′1
N-ASSIGN∗

Γ′1(y)= �τ�
ÍΓ′1{y : �τ�}Γ′1

N-VAR

Í �Γ1� , y : �τ� {upgrade(S2); y : �τ�}Γ′1
N-SEQ

Í �
Γ′

�
, x : �τ1� {let y1 = ē1 in upgrade(S2); y1 : �τ�}Γ′′1

N-LET

Í �
Γ′

�
, x : �τ2� {ē2 : �τ2�}�Γ2�

Í �Γ2� , y : �τ� {upgrade(S1) : Unit}Γ′2
N-ASSIGN∗

Γ′2(y)= �τ�
ÍΓ′2{y : �τ�}Γ′2

N-VAR

Í �Γ2� , y : �τ� {upgrade(S1); y : �τ�}Γ′2
N-SEQ

Í �
Γ′

�
, x : �τ2� {let y= ē2 in upgrade(S1); y : �τ�}Γ′′2

N-LET

Í �Γ� {case ē of inl x. let y= ē1 in upgrade(S2); y inr x. let y= ē2 in upgrade(S1); y : �τ�}Γ′′
N-CASE

where Γ′′i =Γ′i \{y}, for i = 1,2.
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Rule N-CASE requires Γ′′1 \{x}=Γ′′2 \{x}=Γ′′. We prove this below:

From the derivation above, Γ′1 \Γ1 = S2 and Γ′2 \Γ2 = S1. Since {x, y} 6∈ S2 and {x, y} 6∈ S1, it
follows that:

S1 = (Γ′2 \{x})\ (Γ2 \{x}) S2 = (Γ′1 \{x})\ (Γ1 \{x}).

Let high(Γ) be the set of all memory locations with a high type in Γ and low(Γ) be the set of
all memory locations with low type in Γ. Then, S1 and S2 can be written as:

S1 = high(Γ′2 \{x})∩ low(Γ2 \{x}) S2 = high(Γ′1 \{x})∩ low(Γ1 \{x}).

In addition, Γ1 \Γ′ = S1 ∪S and Γ2 \Γ′ = S2 ∪S, where S is the set containing the memory
locations upgraded in both branches. Hence, S1∪S = high(Γ1)∩low(Γ′) and S2∪S = high(Γ2)∩
low(Γ′). Since {x, y} 6∈ Γ′ and {x, y} 6∈ Γ′, S1 ∪S = high(Γ1 \{x, y})∩ low(Γ′) and S2 ∪S = high(Γ2 \
{x, y})∩ low(Γ′).

Hence

(S1 ∪S)∪S2 = high(Γ1 \{x, y})∩ low(Γ′)∪high(Γ′1 \{x, y})∩ low(Γ1 \{x, y})
= high(Γ′1 \{x, y})∩ low(Γ′)

and

S1 ∪ (S2 ∪S) = high(Γ2 \{x, y})∩ low(Γ′)∪high(Γ′2 \{x, y})∩ low(Γ2 \{x, y})
= high(Γ′2 \{x, y})∩ low(Γ′).

Hence high(Γ′1 \{x, y})= high(Γ′2 \{x, y}). Since dom(Γ′1 \{x, y})= dom(Γ′2 \{x, y}), Γ′1 \{x, y}=
Γ′2 \{x, y}. Thus Γ′1 \{x, y}=Γ′2 \{x, y}=Γ′′, i.e. Γ′′i \{x}=Γ′′.

We are left to show that Γ′′ = �⊔Γi \{x}�. I.e. we have to show that high(Γ′′1 \{x})= high(Γ1 \
{x})∪high(Γ2 \{x}). But

high(Γ1 \{x}) ⊇ high(Γ1 \{x})∪S2
= high(Γ′1 \{y, x})
= high(Γ′′1 \{x})

Hence high(Γ1 \{x}) ⊇ high(Γ′′1 \{x}). Similarly, high(Γ2 \{x}) ⊇ high(Γ′′2 \{x}). But high(Γ′′1 \
{x})= high(Γ′′2 \{x}) and dom(Γ′′1 \{x})= dom(Γ1 \{x})= dom(Γ2 \{x}).

Hence high(Γ′′1 \{x})= high(Γ1 \{x})∪high(Γ2 \{x}). Thus Γ′′1 \{x}= �⊔Γi \{x}�.

Case: T-CASE-H. From i.h. applied to pc`Γ{e : (τ1+τ2)H ē}Γ′ and H `Γ′, x : τi{e i : τ ē i}Γi,
we get that Í �Γ� {ē : Option(�τ1�+�τ2�)}

�
Γ′

�
and Í �

Γ′
�

, x : �τi� {ē i : �τ�}�Γi�, for i = 1,2.

Since pc ` Γ{e : (τ1 +τ2)H ē}Γ′, it must be the case that τ = σH , for some σ, hence �τ� =
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Option(�σ�). The desired result follows from the derivation below:

Í �Γ� {ē : Option(
�
τ1

�+�
τ2

�
)}

�
Γ′

�
. . .

Í �
Γ′

�
, x′ : Unit{(∀l ∈ updated(ē1, ē2). l := None);None : �τ�}Γ′′′

N-SEQ

(
�
Γ′

�
, x′ :

�
τ1

�+�
τ2

�
)(x′)= �

τ1
�+�

τ2
�

Í �
Γ′

�
, x′ :

�
τ1

�+�
τ2

�
{x′ :

�
τ1

�+�
τ2

�
}
�
Γ′

�
, x′ :

�
τ1

�+�
τ2

� N-VAR

Í �
Γ′

�
, x :

�
τ1

�
{ē1 : �τ�}�Γ1

�
Í �

Γ′
�

, x′ :
�
τ1

�+�
τ2

�
, x :

�
τ1

�
{ē1 : �τ�}Γ′1

LEM. 30

ÍΓ′1, y : �τ� {upgrade(S2) : Unit}Γ′′1
N-ASSIGN∗

Γ′′1(y)= �τ�
ÍΓ′′1{y : �τ�}Γ′′1

N-VAR

ÍΓ′1, y : �τ� {upgrade(S2); y : �τ�}Γ′′1
N-SEQ

Í �
Γ′

�
, x′ :

�
τ1

�+�
τ2

�
, x :

�
τ1

�
{let y= ē1 in upgrade(S2); y : �τ�}Γ′′′1

N-LET

Í �
Γ′

�
, x :

�
τ2

�
{ē2 : �τ�}�Γ2

�
Í �

Γ′
�

, x′ :
�
τ1

�+�
τ2

�
, x :

�
τ2

�
{ē2 : �τ�}Γ′2

LEM. 30

ÍΓ′2, y : �τ� {upgrade(S1) : Unit}Γ′′2
N-ASSIGN∗

Γ′′2(y)= �τ�
ÍΓ′′2{y : �τ�}Γ′′2

N-VAR

ÍΓ′2, y : �τ� {upgrade(S1); y : �τ�}Γ′′2
N-SEQ

Í �
Γ′

�
, x′ :

�
τ1

�+�
τ2

�
, x :

�
τ2

�
{let y= ē2 in upgrade(S1); y : �τ�}Γ′′′2

N-LET

Í �
Γ′

�
, x′ :

�
τ1

�+�
τ2

�
{case x′ of inl x. let y= ē1 in upgrade(S2); y inr x. let y= ē2 in upgrade(S1); y : �τ�}Γ′′

N-CASE

Í �Γ� {case ē of None. (∀l ∈ updated(ē i). l := None);None
`Γ{case e′ of Some x′. (case x′ of inl x. let y= ē1 in upgrade(S2); y inr x. let y= ē2 in upgrade(S1); y) : �τ�}Γ′′ \{x}

N-CASE

where Γ′i = �Γi� , x′ : �τ1�+�τ2�; Γ′′′i =Γ′′i \{y}, i = 1,2.

Proving Γ′′′1 \ {x} = Γ′′2 \ {x} = Γ′′ and Γ′′ = �⊔Γi \{x}� follows a similar reasoning as in the
previous case T-CASE-L. We are left to show that Γ′′′ =Γ′′.

updated(ē1, ē2) = S∪S1 ∪S2 ∪S′, where S is defined as previously (the set containing the
memory locations upgraded in both branches) and S′ is the set containing all the memory
locations which get updated in both ē1 and ē2, but not upgraded. I.e., S′ contains all the
memory locations that already have an Option type. Thus, Í �Γ� , x′ : Unit{∀l ∈ S ∪S1 ∪S2 ∪
S′. l := None : Unit}Γ′′′. Since assigning None to the memory locations in S′ does not affect the
typing environment, Í �Γ� , x′ : Unit{∀l ∈ S∪S1 ∪S2. l := None : Unit}Γ′′′.

As pc = H, for the memory locations in S, S1, and S2, updating them has the same effect
on the typing environment as upgrading them. I.e. Í �

Γ′
�

, x′ : �τ1�+ �τ2� {upgrade(S,S1,S2) :
Unit}Γ′′. Hence Γ′′′ =Γ′′ (since x′ ∉ S∪S1 ∪S2).

Case: T-WHILE-L. From i.h. applied to pc ` Γ{e′ : τ ē′}Γ, we get that Í �Γ� {ē′ : �τ�}�Γ�. By
applying rule N-WHILE we obtain the desired result:

�Γ� (x)= Int Í �Γ� {ē′ : �τ�}�Γ�
Í �Γ� {while x do ē′ : Unit}�Γ� N-WHILE

Case: T-WHILE-H. The transformation derivation is of the form

Γ(x)= IntH H `Γ{e : τ ē}Γ

pc`Γ{while x do e : UnitL 
pc`Γ{while (case x of None. (∀l ∈ updated(ē). l := None; ) 0 Some y. y) do ē}Γ

T-WHILE-H
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From i.h. applied to H ` Γ{e : τ ē}Γ, we get that Í �Γ� {ē : �τ�}�Γ�. The desired result
follows from the derivation below:

�Γ� (x)= Option(Int)

Í �Γ� {∀l ∈ updated(ē). l := None;0 : Int}�Γ� LEM. 32

Í �Γ� , y : Unit{∀l ∈ updated(ē). l := None;0 : Int}�Γ� , y : Unit
LEM. 30

Í �Γ� , y : Int{y : Int}�Γ� , y : Int
N-VAR

Í �Γ� {case x of None. ∀l ∈ updated(ē). l := None;0 Some y. y : Int}�Γ� N-CASE Í �Γ� {ē : �τ�}�Γ�
Í �Γ� {while (case x of None. ∀l ∈ updated(ē). l := None;0 Some y. y) do ē : Unit}�Γ� N-WHILE

Case: T-UPGRADE. From i.h. applied to pc ` Γ{e :σL ē}Γ′, we get that Í �Γ� {ē : �σ�}�Γ′�. By
applying rule N-INL we obtain the desired result:

Í �Γ� {ē : �σ�}�Γ′�
Í �Γ� {Some ē : Option(�σ�)}�Γ′� N-INL

■

Transformation correctness

Lemma 33 (Memory weakening). If 〈e,µ〉 ⇓ 〈v f ,µ f 〉 and x ∉ dom(µ), then 〈e,µ∪ {x 7→ v′}〉 ⇓
〈v f ,µ f ∪ {x 7→ v′}〉.
Proof. By induction on the derivation of the evaluation relation 〈e,µ〉 ⇓ 〈v f ,µ f 〉. The proof is
standard and we do not include it here. ■
Theorem 34 (Correctness, equivalence between source and target programs). For any source
program e, typing environment Γ, program context pc, and store µ, if pc ` Γ{e : τ ē}Γ′ and
〈e,µ〉 ⇓ 〈v f ,µ f 〉, then there exists v̄ f and µ̄ f , such that 〈ē,

�
µ
�
Γ〉 ⇓ 〈v̄ f , µ̄ f 〉 and v f ∼τ v̄ f and

µ f ∼Γ′ µ̄ f .

Proof. By induction on the derivation of the evaluation relation 〈e,µ〉 ⇓ 〈v f ,µ f 〉.
Let

�
µ
�
Γ = µ̄. Then, from Lemma 16, µ ∼Γ µ̄. Suppose further that pc ` Γ{e : τ ē}Γ′ and

〈e,µ〉 ⇓ 〈v f ,µ f 〉. We prove that 〈ē, µ̄〉 ⇓ 〈v̄ f , µ̄ f 〉, where v f ∼τ v̄ f and µ f ∼Γ′ µ̄ f by induction on the
derivation of 〈e,µ〉 ⇓ 〈v f ,µ f 〉 and cases according to the last rule applied.

Case: E-VAL. The transformation derivation is of the form

pc`Γ{v : τ v}Γ
T-VAL

Suppose that 〈v,µ〉 ⇓ 〈v,µ〉. By applying rule E-VAL we get that v̄ f = v and µ̄ f = µ̄. Hence,
v f ∼τ v̄ f and µ f ∼Γ′ µ̄ f (from hypothesis and since Γ′ =Γ).

Case: E-VARLOC. If l ∈ dom(µ), then l ∈ dom(µ̄) (from store equivalence, Definition 15). By
applying rule E-VARLOC, we get that v̄ f = µ̄(l) and µ̄ f = µ̄. Hence, v̄ f = µ(l) ∼Γ(l) µ̄(l) = v̄ f and
µ f ∼Γ′ µ̄ f (from hypothesis and since Γ′ =Γ).
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Case: E-EXP. For the transformation derivation, we distinguish two cases:

• pc`Γ{e1 ⊕ e2 : IntL ē}Γ2
The transformation derivation is of the form

pc`Γ{e1 : IntL ē1}Γ1 pc`Γ1{e2 : IntL ē2}Γ2

pc`Γ{e1 ⊕ e2 : IntL ē1 ⊕ ē2}Γ2
T-EXP-L

From i.h. applied to: (1) pc ` Γ{e1 : IntL ē1}Γ1, (2) 〈e1,µ〉 ⇓ 〈n1,µ1〉, and (3) µ ∼Γ µ̄, we
get that 〈ē1, µ̄〉 ⇓ 〈v̄1, µ̄1〉, with n1 ∼IntL v̄1 and µ1 ∼Γ1 µ̄1. From value equivalence relation
(Figure 4.7) it follows that v̄1 = n1.

From i.h. applied to: (4) pc ` Γ1{e2 : IntL ē2}Γ2, (5) 〈e2,µ1〉 ⇓ 〈n2,µ2〉, and (6) µ1 ∼Γ1 µ̄1,
we get that 〈ē2, µ̄1〉 ⇓ 〈v̄2, µ̄2〉, with n2 ∼IntL v̄2 and µ2 ∼Γ2 µ̄2. From value equivalence relation
(Figure 4.7) it follows that v̄2 = n2.

By applying rule E-EXP we get that v̄ f = n1 ⊕n2 and µ̄ f = µ̄2:

〈ē1, µ̄〉 ⇓ 〈n1, µ̄1〉 〈ē2, µ̄1〉 ⇓ 〈n2, µ̄2〉
〈ē1 ⊕ ē2, µ̄〉 ⇓ 〈n1 ⊕n2, µ̄2〉

E-EXP

Hence, v f = n1 ⊕n2 ∼IntL n1 ⊕n2 = v̄ f and µ f =µ2 ∼Γ2 µ̄2 = µ̄ f (from i.h.).

• pc`Γ{e1 ⊕ e2 : IntH ē}Γ2
The transformation derivation is of the form

T-EXP-H

pc`Γ{e1 : IntH ē1}Γ1 pc`Γ1{e2 : IntH ē2}Γ2

pc`Γ{e1 ⊕ e2 : IntH 
pc`Γ{let x = ē1 in let y= ē2 in

pc`Γ{ case x of None. None Some x′. (case y of None. None Some y′. Some (x′⊕ y′))}Γ2

From i.h. applied to: (1) pc ` Γ{e1 : IntH  ē1}Γ1, (2) 〈e1,µ〉 ⇓ 〈n1,µ1〉, and (3) µ ∼Γ µ̄, we
get that 〈ē1, µ̄〉 ⇓ 〈v̄1, µ̄1〉, with n1 ∼IntH v̄1 and µ1 ∼Γ1 µ̄1. From value equivalence relation
(Figure 4.7) it follows that v̄1 = Some n1.

From i.h. applied to: (4) pc ` Γ1{e2 : IntH ē2}Γ2, (5) 〈e2,µ1〉 ⇓ 〈n2,µ2〉, and (6) µ1 ∼Γ1 µ̄1,
we get that 〈ē2, µ̄1〉 ⇓ 〈v̄2, µ̄2〉, with n2 ∼IntH v̄2 and µ2 ∼Γ2 µ̄2. From value equivalence relation
(Figure 4.7) it follows that v̄2 = Some n2.

From the derivation in Figure B.3 we get that v̄ f = Some (n1 ⊕ n2) and µ̄ f = µ̄2. Hence,
v f = n1 ⊕n2 ∼IntH Some (n1 ⊕n2)= v̄ f (from Figure 4.7) and µ f =µ2 ∼Γ2 µ̄2 = µ̄ f .

Case: E-ASSIGN. The transformation derivation is of the form

pc`Γ{e :σ` ē}Γ′ pcv `

pc`Γ{l := e : UnitL l := ē}Γ′[l 7→σ`]
T-ASSIGN

From i.h. applied to: (1) pc ` Γ{e : τ ē}Γ′, (2) 〈e,µ〉 ⇓ 〈v,µ′〉, and (3) µ ∼Γ µ̄, we get that
〈ē, µ̄〉 ⇓ 〈v̄, µ̄′〉, with v ∼τ v̄ and µ∼Γ′ µ̄′, where τ=σ`.

By applying rule E-ASSIGN, we get that v̄ f = () and µ̄ f = µ̄′[l 7→ v̄]:

〈ē, µ̄〉 ⇓ 〈v̄, µ̄′〉
〈l := ē, µ̄〉 ⇓ 〈(), µ̄′[l 7→ v̄]〉 E-ASSIGN
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〈ē1, µ̄〉 ⇓ 〈Some n1, µ̄1〉
〈ē2, µ̄1〉 ⇓ 〈Some n2, µ̄2〉

〈ē2, µ̄1 ∪ {x 7→ Some n1}〉 ⇓ 〈Some n2, µ̄2 ∪ {x 7→ Some n1}〉 LEM. 33

x ∈ dom(µ̄′1)

〈x, µ̄′1〉 ⇓ 〈Some n1, µ̄′1〉
E-VARLOC

y ∈ dom(µ̄′2)

〈y,µ′2〉 ⇓ 〈Some n2,µ′2〉
E-VARLOC

x′ ∈ dom(µ′2 ∪ {y′ 7→ n2})

〈x′,µ′2 ∪ {y′ 7→ n2}〉 ⇓ 〈n1,µ′2 ∪ {y′ 7→ n2}〉 E-VARLOC

y′ ∈ dom(µ′2 ∪ {y′ 7→ n2})

〈y′,µ′2 ∪ {y′ 7→ n2}〉 ⇓ 〈n2,µ′2 ∪ {y′ 7→ n2}〉 E-VARLOC

〈x′⊕ y′,µ′2 ∪ {y′ 7→ n2}〉 ⇓ 〈n1 ⊕n2,µ′2 ∪ {y′ 7→ n2}〉 E-EXP

〈Some (x′⊕ y′),µ′2 ∪ {y′ 7→ n2}〉 ⇓ 〈Some (n1 ⊕n2),µ′2 ∪ {y′ 7→ n2}〉 E-INR

〈case y of None. None Some y′. Some (x′⊕ y′),µ′2〉 ⇓ 〈Some (n1 ⊕n2),µ′2〉
E-CASE-INR

〈case x of None. None
〈case x of Some x′. (case y of None. None Some y′. Some (x′⊕ y′)),µ′1〉 ⇓ 〈Some (n1 ⊕n2),µ′1〉

E-CASE-INR

〈let y= ē2 in

case x of None. None
case x of Some x′. (case y of None. None Some y′. Some (x′⊕ y′)), µ̄1 ∪ {x 7→ Some n1}〉 ⇓ 〈Some (n1 ⊕n2),µ′1 \{y}〉

E-LET

〈let x = ē1 in let y= ē2 in

case x of None. None
case x of Some x′. (case y of None. None Some y′. Some (x′⊕ y′)), µ̄〉 ⇓ 〈Some (n1 ⊕n2), µ̄2〉

E-LET

where µ′1 = µ̄2 ∪ {x 7→ Some n1, y 7→ Some n2}; µ′2 =µ′1 ∪ {x′ 7→ n1}.

Figure B.3: Concluding derivation, case E-EXP, Theorem 34.

Hence v f = ()∼UnitL ()= v̄ f (from Figure 4.7). We are left to show that µ f =µ′[l 7→ v]∼Γ′[l 7→σ`]
µ̄′[l 7→ v̄] = µ̄ f . From i.h. we know that µ′ ∼Γ′ µ̄′. As v ∼τ v̄, {l 7→ v} ∼l:τ {l 7→ v̄} (from Defini-
tion 15). Hence µ′[l 7→ v]∼Γ′[l 7→τ] µ̄

′[l 7→ v̄], i.e. µ f ∼Γ′[l 7→τ] µ̄ f .

Case: E-INL. The transformation derivation is of the form

pc`Γ{e : τ1 ē}Γ′

pc`Γ{inl e : (τ1 +τ2)L inl ē}Γ′
T-INL

From i.h. applied to: (1) pc ` Γ{e : τ1 ē}Γ′, (2) 〈e,µ〉 ⇓ 〈v,µ′〉, and (3) µ ∼Γ µ̄, we get that
〈ē, µ̄〉 ⇓ 〈v̄, µ̄′〉, with v ∼τ1 v̄ and µ′ ∼Γ′ µ̄′.

By applying rule E-INL we get that v̄ f = inl v̄ and µ̄ f = µ̄′:
〈ē, µ̄〉 ⇓ 〈v̄, µ̄′〉

〈inl ē, µ̄〉 ⇓ 〈inl v̄, µ̄′〉 E-INL

Hence v f = inl v ∼(τ1+τ2)L inl v̄ = v̄ f (from Figure 4.7) and µ f =µ′ ∼Γ′ µ̄′ = µ̄ f (from i.h.).

Case: E-INR. Similar to case inl e.

Case: E-LET. The transformation derivation is of the form

pc`Γ{e1 : τ1 ē1}Γ1 pc`Γ1, x : τ1{e2 : τ2 ē2}Γ2

pc`Γ{let x = e1 in e2 : τ2 let x = ē1 in ē2}Γ2 \{x}
T-LET
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From i.h. applied to: (1) pc ` Γ{e1 : τ1 ē1}Γ1, (2) 〈e1,µ〉 ⇓ 〈v1,µ1〉, and (3) µ ∼Γ µ̄, we get
that 〈ē1, µ̄〉 ⇓ 〈v̄1, µ̄1〉, with v1 ∼τ1 v̄1 and µ1 ∼Γ1 µ̄1.

We are to show that µ1∪{x 7→ v1}∼Γ1,x:τ1 µ̄1∪{x 7→ v̄1}. Since v1 ∼τ1 v̄1, {x 7→ v1}∼x:τ1 {x 7→ v̄1}
(Definition 15). Hence µ1 ∪ {x 7→ v1}∼Γ1,x:τ1 µ̄1 ∪ {x 7→ v̄1} (since µ1 ∼Γ1 µ̄1).

From i.h. applied to (4) pc ` Γ1, x : τ1{e2 : τ2 ē2}Γ2, (5) 〈e2,µ1 ∪ {x 7→ v1}〉 ⇓ 〈v2,µ2〉, and
(6) µ1 ∪ {x 7→ v1}∼Γ1,x:τ1 µ̄1 ∪ {x 7→ v̄1}, we get that 〈ē2, µ̄1 ∪ {x 7→ v̄1}〉 ⇓ 〈v̄2, µ̄2〉, with v2 ∼τ2 v̄2 and
µ2 ∼Γ2 µ̄2.

By applying rule E-LET, we get that v̄ f = v̄2 and µ̄ f = µ̄2 \{x}:

〈ē1, µ̄〉 ⇓ 〈v̄1, µ̄1〉 〈ē2, µ̄1 ∪ {x 7→ v̄1}〉 ⇓ 〈v̄2, µ̄2〉
〈let x = ē1 in ē2, µ̄〉 ⇓ 〈v̄2, µ̄2 \{x}〉 E-LET

Hence v f = v2 ∼τ2 v̄2 = v̄ f (from i.h.) and µ f =µ2 \{x}∼Γ2\{x} µ̄2 \{x}= µ̄ f .

Case: E-CASE-INL. For the transformation derivation we distinguish two cases:

• pc`Γ{e : (τ1 +τ2)L ē}Γ′

The transformation derivation is of the form

T-CASE-L

pc`Γ{e : (τ1 +τ2)L ē}Γ′ pc`Γ′, x : τi{e i : τ ē i}Γi i = 1,2 S1 =Γ1 \Γ2 S2 =Γ2 \Γ1

pc`Γ{case e of inl x. e1 inr x. e2 : τ 
pc`Γ{case ē of inl x. let y= ē1 in upgrade(S2); y inr x. let y= ē2 in upgrade(S1); y}

⊔
Γi \{x}

We assume e evaluates under rule E-CASE-INL. For the case when it evaluates under rule
E-CASE-INR, the proof is analogous.

From i.h. applied to: (1) pc`Γ{e : (τ1+τ2)L ē}Γ′, (2) 〈e,µ〉 ⇓ 〈inl v1,µ1〉, and (3) µ∼Γ µ̄, we
get that 〈ē, µ̄〉 ⇓ 〈v̄, µ̄1〉, with inl v1 ∼(τ1+τ2)L v̄ and µ1 ∼Γ′ µ̄1. From value equivalence relation
(Figure 4.7), v̄ = inl v̄1, with v1 ∼τ1 v̄1. Hence {x 7→ v1} ∼x:τ1 {x 7→ v̄1} (Definition 15). Thus
µ1 ∪ {x 7→ v1}∼Γ′,x:τ1 µ̄1 ∪ {x 7→ v̄1}.

From i.h. applied to: (4) pc ` Γ′, x : τ1{e1 : τ ē1}Γ1, (5) 〈e1,µ1 ∪ {x 7→ v1}〉 ⇓ 〈v2,µ2〉, and
(6) µ1 ∪ {x 7→ v1} ∼Γ′,x:τ1 µ̄1 ∪ {x 7→ v̄1}, we get that 〈ē1, µ̄1 ∪ {x 7→ v̄1}〉 ⇓ 〈v̄2, µ̄2〉, with v2 ∼τ v̄2 and
µ2 ∼Γ1 µ̄2.

By applying rule E-CASE-INL, we get that v̄ f = v̄2 and µ̄ f = µ̄′2 \{x, y}:

〈ē, µ̄〉 ⇓ 〈inl v̄1, µ̄1〉

〈ē1, µ̄1 ∪ {x 7→ v̄1}〉 ⇓ 〈v̄2, µ̄2〉

〈upgrade(S2), µ̄2 ∪ {y 7→ v̄2}〉 ⇓ 〈(), µ̄′2〉
E-ASSIGN∗

y ∈ dom(µ̄′2)

〈y, µ̄′2〉 ⇓ 〈v̄2, µ̄′2〉
E-VARLOC

〈upgrade(S2); y, µ̄2 ∪ {y 7→ v̄2}〉 ⇓ 〈v̄2, µ̄′2〉
E-SEQ

〈let y= ē1 in upgrade(S2); y, µ̄1 ∪ {x 7→ v̄1}〉 ⇓ 〈v̄2, µ̄′2 \{y}〉 E-LET

〈case ē of inl x. let y= ē1 in upgrade(S2); y inr x. let y= ē2 in upgrade(S1); y, µ̄〉 ⇓ 〈v̄2, µ̄′2 \{x, y}〉 E-CASE-INL

Thus v f = v2 ∼τ v̄2 = v̄ f . We are left to show that µ f =µ2 \{x}∼⊔
Γi\{x} µ̄

′
2 \{y, x}= µ̄ f .

From i.h., µ2 ∼Γ1 µ̄2, i.e. for all l, µ2(l) ∼Γ1(l) µ̄2(l) (Definition 15). S2 is the set of memory
locations that get upgraded in the inr branch (ē2), but not in the inl branch (ē1). I.e. for all
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〈ē, µ̄〉 ⇓ 〈Some inl v̄1, µ̄1〉
I.H.

〈x, µ̄1 ∪ {x′ 7→ inl v̄1}〉 ⇓ 〈inl v̄1, µ̄1 ∪ {x′ 7→ inl v̄1}〉 E-VARLOC

〈ē1, µ̄1 ∪ {x 7→ v̄1}〉 ⇓ 〈v̄2, µ̄2〉
I.H.

〈ē1, µ̄1 ∪ {x′ 7→ inl v̄1, x 7→ v̄1}〉 ⇓ 〈v̄2, µ̄2 ∪ {x′ 7→ inl v̄1}〉 LEM. 33

〈upgrade(S2), µ̄2 ∪ {x′ 7→ inl v̄1, y 7→ v̄2}〉 ⇓ 〈(), µ̄′2 ∪ {x′ 7→ inl v̄1, y 7→ v̄2}〉 E-ASSIGN∗

y ∈ dom(µ̄′2 ∪ {x′ 7→ inl v̄1, y 7→ v̄2})

〈y, µ̄′2 ∪ {x′ 7→ inl v̄1, y 7→ v̄2}〉 ⇓ 〈v̄2, µ̄′2 ∪ {x′ 7→ inl v̄1, y 7→ v̄2}〉 E-VARLOC

〈upgrade(S2); y, µ̄2 ∪ {x′ 7→ inl v̄1, y 7→ v̄2}〉 ⇓ 〈v̄2, µ̄′2 ∪ {x′ 7→ inl v̄1, y 7→ v̄2}〉 E-SEQ

〈let y= ē1 in upgrade(S2); y, µ̄1 ∪ {x′ 7→ inl v̄1, x 7→ v̄1}〉 ⇓ 〈v̄2, µ̄′2 ∪ {x′ 7→ inl v̄1}〉 E-LET

〈case x′ of inl x. let y= ē1 in upgrade(S2); y
〈case x′ of inr x. let y= ē2 in upgrade(S1); y, µ̄1 ∪ {x′ 7→ inl v̄1}〉〈v̄2, µ̄′2 ∪ {x′ 7→ inl v̄1}\ {x1}〉

E-CASE-INL

〈case ē of None. (∀l ∈ updated(ē1, ē2). l := None); None
〈case ē of Some x′. case x′ of inl x. let y= ē1 in upgrade(S2); y inr x. let y= ē2 in upgrade(S1); y, µ̄〉〈v̄2, µ̄′2 \{x}〉

E-CASE-INR

Figure B.4: Concluding derivation, case E-CASE-INL, Theorem 34.

l ∈ S2, (Γ2 \Γ1)(l)=σH ((
⊔
Γi \{x})(l)=σH). Or, put differently, for all l ∈ S2, (l,Some µ̄2(l)) ∈ µ̄′2.

As µ2(l)∼σL µ̄2(l), it follows that µ2(l)∼σH Some µ̄2(l).
For the other memory locations l, i.e. for all l ∈ dom(µ2)\S2, (

⊔
Γi \{x})(l)= (Γ1 \{x})(l) and

µ2(l)∼Γ1(l) µ̄2(l)= (µ̄′2\{y})(l). I.e. (µ2\{x})(l)∼Γ1(l) (µ̄′2\{y, x})(l). Hence µ2\{x}∼⊔
Γi\{x} µ̄

′
2\{y, x}.

• pc`Γ{e : (τ1 +τ2)H ē}Γ′

The transformation derivation is of the form

T-CASE-H

pc`Γ{e : (τ1 +τ2)H ē}Γ′ H `Γ′, x : τi{e i : τ ē i}Γi i = 1,2 S1 =Γ1 \Γ2 S2 =Γ2 \Γ1

pc`Γ{case e of inl x. e1 inr x. e2 : τ 
pc`Γ{case ē of None. (∀l ∈ updated(ē1, ē2). l := None); None
pc`Γ{case ē of Some x′. case x′ of inl x. let y= ē1 in upgrade(S2); y
pc`Γ{case ē of Some x′. case x′ of inr x. let y= ē2 in upgrade(S1); y}

⊔
Γi \{x}

From i.h. applied to: (1) pc ` Γ{e : (τ1 +τ2)H ē}Γ′, (2) 〈e,µ〉 ⇓ 〈inl v1,µ1〉, and (3) µ ∼Γ µ̄,
and we get 〈ē, µ̄〉 ⇓ 〈v̄, µ̄1〉, with inl v1 ∼(τ1+τ2)H v̄ and µ1 ∼Γ′ µ̄1. From value equivalence relation
(Figure 4.7), v̄ = Some inl v̄1, with v1 ∼τ1 v̄1. Hence {x 7→ v1}∼x:τ1 {x 7→ v̄1} (Definition 15). Thus
µ1 ∪ {x 7→ v1}∼Γ′,x:τ1 µ̄1 ∪ {x 7→ v̄1}.

From i.h. applied to: (4) pc ` Γ′, x : τ1{e1 : τ ē1}Γ1, (5) 〈e1,µ1 ∪ {x 7→ v1}〉 ⇓ 〈v2,µ2〉, and
(6) µ1 ∪ {x 7→ v1} ∼Γ′,x:τ1 µ̄1 ∪ {x 7→ v̄1}, we get 〈ē1, µ̄1 ∪ {x 7→ v̄1}〉 ⇓ 〈v̄2, µ̄2〉, with v2 ∼τ v̄2 and
µ2 ∼Γ1 µ̄2.

From the derivation in Figure B.4, v̄ f = v̄2 and µ̄ f = µ̄′2 \ {x}. Hence, v f ∼τ v̄ f (from i.h.).
We are left to show that µ f = µ2 \ {x} ∼tΓi\{x} µ̄

′
2 \ {x} = µ̄ f . The argument is analogous to the

previous case. Hence µ f ∼tΓi\{x} µ̄ f .
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Case: E-CASE-INR.
Similar to case E-CASE-INL.

Case: E-WHILE-TRUE.
The last step of the derivation has the form:

µ(x) 6= 0 〈e,µ〉 ⇓ 〈v,µ′〉 〈while x do e,µ′〉 ⇓ 〈v′,µ′′〉
〈while x do e,µ〉 ⇓ 〈v′,µ′′〉 E-WHILE-TRUE

For the transformation derivation we distinguish two cases:

• Γ(x)= IntL

The transformation derivation is of the form

Γ(x)= IntL pc`Γ{e : τ ē}Γ

pc`Γ{while x do e : UnitL while x do ē}Γ
T-WHILE-L

We have to show that if 〈while x do ē, µ̄〉 ⇓ 〈v̄′, µ̄′′〉, then v′ ∼UnitL v̄′ and µ′′ ∼Γ µ̄′′. As µ∼Γ µ̄
and Γ(x)= IntL, it must be the case that µ̄(x)= µ(x). Hence µ̄(x) 6= 0. Thus the target program
evaluates under rule E-WHILE-TRUE as well.

From i.h. applied to: (1) pc ` Γ{e : τ ē}Γ, (2) 〈e,µ〉 ⇓ 〈v,µ′〉, and (3) µ ∼Γ µ̄, we get that
〈ē, µ̄〉 ⇓ 〈v̄, µ̄′〉, with v′ ∼τ v̄ and µ′ ∼Γ µ̄′.

From i.h. applied to: (4) pc`Γ{while x do e : UnitL while x do ē}Γ, (5) 〈while x do e,µ′〉 ⇓
〈v′,µ′′〉, and (6) µ′ ∼Γ µ̄′, we get that 〈while x do ē, µ̄′〉 ⇓ 〈v̄′, µ̄′′〉, with v′ ∼UnitL v̄′ and µ′′ ∼Γ µ̄′′.

By applying rule E-WHILE-TRUE, we get that v̄ f = v̄′ and µ̄ f = µ̄′′:

µ̄(x) 6= 0 〈e, µ̄〉 ⇓ 〈v̄, µ̄′〉 〈while x do ē, µ̄′〉 ⇓ 〈v̄′, µ̄′′〉
〈while x do ē, µ̄〉 ⇓ 〈v̄′, µ̄′′〉 E-WHILE-TRUE

Hence v f = v′ ∼UnitL v̄′ = v̄ f and µ f =µ′′ ∼Γ µ̄′′ = µ̄ f .

• Γ(x)= IntH

The transformation derivation is of the form

Γ(x)= IntH H `Γ{e : τ ē}Γ

pc`Γ{while x do e : UnitL 
pc`Γ{while (case x of None. ∀l ∈ updated(ē). l := None; 0 Some y. y) do ē}Γ

T-WHILE-H

We have to show that if

〈while (case x of None. ∀l ∈ updated(ē). l := None; 0 Some y. y) do ē, µ̄〉 ⇓ 〈v̄′, µ̄′′〉,

then v′ ∼UnitL v̄′ and µ′′ ∼Γ µ̄′′.
As µ∼Γ µ̄ and Γ(x)= IntH , it must be the case that µ̄(x)= Some µ(x), with µ(x) 6= 0.
From i.h. applied to: (1) H ` Γ{e : τ ē}Γ, (2) 〈e,µ〉 ⇓ 〈v,µ′〉, and (3) µ ∼Γ µ̄, we get that

〈ē, µ̄〉 ⇓ 〈v̄, µ̄′〉, with v ∼τ v̄ and µ′ ∼Γ µ̄′.
From i.h. applied to: (4) pc`Γ{while x do e : UnitL while (case x of None. ∀l ∈ updated(ē). l :=

None; 0 Some y. y) do ē}Γ, (5) 〈while x do e,µ′〉 ⇓ 〈v′,µ′′〉 and (6) µ′ ∼Γ µ̄′, we get that
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〈while (case x of None. ∀l ∈ updated(ē). l := None; 0 Some y. y) do ē, µ̄′〉 ⇓ 〈v̄′, µ̄′′〉, with v′ ∼UnitL

v̄′ and µ′′ ∼Γ µ̄′′.
From the derivation below it follows that v̄ f = v̄′ and µ̄ f = µ̄′′:

µ̄(x)= Some (µ(x)) 〈y, µ̄∪ {y 7→µ(x)}〉 ⇓ 〈µ(x), µ̄∪ {y 7→µ(x)}〉 E-VAR

〈case x of None. ∀l ∈ updated(ē). l := None; 0 Some y. y, µ̄〉 ⇓ 〈µ(x), µ̄〉 E-CASE-INR

〈ē, µ̄〉 ⇓ 〈v̄, µ̄′〉
〈while (case x of None. ∀l ∈ updated(ē). l := None;0 Some y. y) do ē, µ̄′〉 ⇓ 〈v̄′, µ̄′′〉
〈while (case x of None. ∀l ∈ updated(ē). l := None;0 Some y. y) do ē, µ̄〉 ⇓ 〈v̄′, µ̄′′〉 E-WHILE-TRUE

Hence v f = v′ ∼UnitL v̄′ = v̄ f and µ f =µ′′ ∼Γ µ̄′′ = µ̄ f .

Case: E-WHILE-FALSE.
The last step of the derivation has the form:

µ(x)= 0

〈while x do e,µ〉 ⇓ 〈(),µ〉 E-WHILE-FALSE

For the transformation derivation we distinguish two cases:

• Γ(x)= IntL

The transformation derivation is of the form

Γ(x)= IntL pc`Γ{e : τ ē}Γ

pc`Γ{while x do e : UnitL while x do ē}Γ
T-WHILE-L

As µ ∼Γ µ̄ and Γ(x) = IntL, it must be the case that µ̄(x) = µ(x). Hence µ̄(x) = 0. Thus the
target program evaluates under rule E-WHILE-FALSE as well. Thus v f = () ∼UnitL () = v̄ f and
µ f =µ∼Γ µ̄= µ̄ f .

• Γ(x)= IntH

The transformation derivation is of the form

Γ(x)= IntH H `Γ{e : τ ē}Γ

pc`Γ{while x do e : UnitL 
pc`Γ{while (case x of None. ∀l ∈ updated(ē). l := None; 0 Some y. y) do ē}Γ

T-WHILE-H

As µ ∼Γ µ̄ and Γ(x) = IntH , it must be the case that µ̄(x) = Some µ(x), with µ(x) = 0. Thus
the target program evaluates under rule E-WHILE-FALSE as well:

µ̄(x)= Some 0 〈y, µ̄∪ {y 7→ 0}〉 ⇓ 〈0, µ̄∪ {y 7→ 0}〉 E-VAR

〈case x of None. ∀l ∈ updated(ē2). l := None; 0 Some y. y, µ̄〉 ⇓ 〈0, µ̄〉 E-CASE-INR

〈while (case x of None. ∀l ∈ updated(ē). l := None; 0 Some y. y) do ē, µ̄〉 ⇓ 〈(), µ̄〉 E-WHILE-FALSE

Hence v f = ()∼UnitL ()= v̄ f and µ f =µ∼Γ µ̄= µ̄ f .

Case: E-UPGRADE.
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The transformation derivation is of the form

pc`Γ{e :σL ē}Γ′

pc`Γ{•e :σH Some ē}Γ′
T-UPGRADE

From i.h. applied to: (1) pc`Γ{e : IntL ē}Γ′, (2) 〈e,µ〉 ⇓ 〈v,µ′〉, and (3) µ∼Γ µ̄, we get that
〈ē, µ̄〉 ⇓ 〈v̄, µ̄′〉, with v ∼σL v̄ and µ′ ∼Γ′ µ̄′.

By applying rule E-INR, we get that v̄ f = Some v̄ and µ̄ f = µ̄′:

〈ē, µ̄〉 ⇓ 〈v̄, µ̄′〉
〈Some ē, µ̄〉 ⇓ 〈Some v̄, µ̄′〉 E-INR

Hence v f = v ∼σH Some v̄ = v̄ f (from Figure 4.7) and µ f =µ′ ∼Γ′ µ̄′ = µ̄ f . ■

Transformation monotonicity

Theorem 35 (Source program more precise). For any source program e, typing environment
Γ, program context pc, and stores µ and µ̄ such that µ ≥Γ µ̄, if pc ` Γ{e : τ ē}Γ′ and 〈e,µ〉 ⇓
〈v f ,µ f 〉, then there exists v̄ f and µ̄ f , such that 〈ē, µ̄〉 ⇓ 〈v̄ f , µ̄ f 〉 and v f ≥τ v̄ f and µ f ≥Γ′ µ̄ f .

The proof of this theorem relies on the following helper lemma.

Lemma 36 (Helper). For any source program e, typing environment Γ, and stores µ and µ̄ such
that µ≥Γ µ̄, if H `Γ{e : τ ē}Γ′ and 〈e,µ〉 ⇓ 〈v f ,µ f 〉, then 〈∀l ∈ updated(ē). l := None, µ̄〉 ⇓ 〈(), µ̄ f 〉
and µ f ≥Γ′ µ̄ f .

Proof. By induction on the structure of e.

Case: e = v. From rule T-VAL, ē = v. Then updated(v) =;. From E-VAL, µ f = µ. As µ̄ f ≥Γ µ̄, it
follows that µ f ≥Γ µ̄ f .

Case: e = l. From rule T-VARLOC, ē = l. Then updated(l) = ;. From E-VARLOC, µ f = µ. As
µ̄ f ≥Γ µ̄, it follows that µ f ≥Γ µ̄ f .

Case: e = e1 ⊕ e2. From rule T-EXP-*, updated(ē)= updated(ē1, ē2).
From i.h. applied to (1) 〈e1,µ〉 ⇓ 〈n1,µ1〉, (2) 〈∀l ∈ updated(ē1). l := None, µ̄〉 ⇓ 〈(), µ̄1〉, and

(3) µ≥Γ µ̄, we get µ1 ≥Γ1 µ̄1.
From i.h. applied to (4) 〈e2,µ1〉 ⇓ 〈n2,µ2〉, (5) 〈∀l ∈ updated(ē2). l := None, µ̄1〉 ⇓ 〈(), µ̄2〉, and

(6) µ1 ≥Γ1 µ̄1, we get µ2 ≥Γ2 µ̄2.
Thus 〈∀l ∈ updated(ē1, ē2). l := None, µ̄〉 ⇓ 〈(), µ̄2〉, with µ̄ f = µ̄2. As µ f = µ2, it follows that

µ f ≥Γ2 µ̄ f .

Case: e = l := e′. From rule T-ASSIGN, ē = l := ē′. Then updated(ē)= updated(ē′, l).
From i.h. applied to (1) 〈e′,µ〉 ⇓ 〈v,µ′〉, (2) 〈∀l ∈ updated(ē′). l := None, µ̄〉 ⇓ 〈(), µ̄′〉, and

(3) µ≥Γ µ̄, we get µ′ ≥Γ′ µ̄′. I.e. 〈∀l′ ∈ updated(ē′, l). l′ := None, µ̄〉 ⇓ 〈(), µ̄′[l 7→ None]〉.
As v ≥σH None, it follows that (µ′[l 7→ v])(l) ≥σH (µ̄′[l 7→ None])(l). As µ f = µ′[l 7→ v] and

µ̄ f = µ̄′[l 7→ None], it follows that µ f ≥Γ′[l 7→σH ] µ̄ f .

Case: e = inl e′. From rule T-INL, ē = inl ē′. Then updated(ē)= updated(ē′).
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From i.h. applied to (1) 〈e′,µ〉 ⇓ 〈v,µ′〉, (2) 〈∀l ∈ updated(ē′). l := None, µ̄〉 ⇓ 〈(), µ̄′〉, and
(3) µ ≥Γ µ̄, we get µ′ ≥Γ′ µ̄′. Thus 〈∀l ∈ updated(inl ē′). l := None, µ̄〉 ⇓ 〈(), µ̄′〉. As µ f = µ′ and
µ̄ f = µ̄′, it follows that µ f ≥Γ′ µ̄ f .

Case: e = inr e′. Similar to the previous case.

Case: e = let x = e1 in e2. From rule T-LET, ē = let x = ē1 in ē2. Then updated(ē) =
updated(ē1, ē2).

From i.h. applied to (1) 〈e1,µ〉 ⇓ 〈v1,µ1〉, (2) 〈∀l ∈ updated(ē1). l := None, µ̄〉 ⇓ 〈(), µ̄1〉, and
(3) µ≥Γ µ̄, we get µ1 ≥Γ1 µ̄1.

Let v̄1 be such that v1 ≥τ1 v̄1. Hence, µ1 ∪ {x 7→ v1}≥Γ1,x:τ1 µ̄1 ∪ {x 7→ v̄1}.
From i.h. applied to (4) 〈e2,µ1∪ {x 7→ v1}〉 ⇓ 〈v2,µ2〉, (5) 〈∀l ∈ updated(ē2). l := None, µ̄1∪ {x 7→

v̄1}〉 ⇓ 〈(), µ̄2〉, and (6) µ1 ∪ {x 7→ v1} ≥ Γ1, x : τ1µ̄1 ∪ {x 7→ v̄1}, we get µ2 ≥Γ2 µ̄2. I.e. µ2 \ {x} ≥Γ2\{x}
µ̄2 \{x}.

But x 6∈ updated(ē2). Thus 〈∀l ∈ updated(ē2). l := None, µ̄1〉 ⇓ 〈(), µ̄2 \ {x}〉. Hence 〈∀l ∈
updated(ē1, ē2). l := None, µ̄〉 ⇓ 〈(), µ̄2 \ {x}〉. As µ f = µ2 \ {x} and µ̄ f = µ̄2 \ {x}, it follows that
µ f ≥Γ2\{x} µ̄ f .

Case: e = case e′ of inl x. e1 inr x. e2. From rule T-CASE-*, updated(ē)= updated(ē′, ē1, ē2).
From i.h. applied to (1) 〈e′,µ〉 ⇓ 〈v,µ1〉, (2) 〈∀l ∈ updated(ē′). l := None, µ̄〉 ⇓ 〈(), µ̄1〉, and

(3) µ≥Γ µ̄, we get µ1 ≥Γ′ µ̄1.
We assume e evaluates under rule E-CASE-INL. (For the case when it evaluates under rule

E-CASE-INR, the proof is analoguous.) Hence, v = inl v1. Let v̄1 be such that v1 ≥τ1 v̄1. Then
µ1 ∪ {x 7→ v1}≥Γ′,x:τ1 µ̄1 ∪ {x 7→ v̄1}.

From i.h. applied to (4) 〈e1,µ1∪ {x 7→ v1}〉 ⇓ 〈v2,µ2〉, (5) 〈∀l ∈ updated(ē1). l := None, µ̄1∪ {x 7→
v̄1}〉 ⇓ 〈(), µ̄2〉, and (6) µ1 ∪ {x 7→ v1} ≥Γ′,x:τ1 µ̄1 ∪ {x 7→ v̄1}, we get µ2 ≥Γ′′ µ̄2. Hence, µ2 \ {x} ≥Γ′′\{x}
µ̄2 \{x}.

Since x 6∈ updated(ē1), it follows that 〈∀l ∈ updated(ē1). l := None, µ̄1〉 ⇓ 〈(), µ̄2 \{x}〉.
From 〈∀l ∈ updated(ē2). l := None, µ̄2 \ {x}〉 ⇓ 〈(), µ̄3〉, µ̄ f = µ̄3. But µ f = µ2 \ {x}. We show

below that µ f =µ2 \{x}≥Γ′′\{x} µ̄3 = µ̄ f .
For all memory locations l ∈ updated(ē2), µ f (l)≥Γ′′(l) µ̄ f (l)= None. For all memory locations

l ∈ dom(µ f )\updated(ē2), µ f (l)= (µ2 \{x})(l)≥Γ′′(l) (µ̄2 \{x})(l)= µ̄ f (l). Thus µ f ≥Γ′′\{x} µ̄ f .

Case: e = while x do e′. From rule T-WHILE-*, updated(ē)= updated(ē′).
We distinguish two subcases:

Subcase: µ(x)= 0. Then rule E-WHILE-FALSE applies and µ f =µ.
From 〈∀l ∈ updated(ē′). l := None, µ̄〉 ⇓ 〈(), µ̄′〉, µ̄ f = µ̄′. We show below that µ f ≥Γ µ̄ f .
For all memory locations l ∈ updated(ē′), µ f (l) ≥Γ(l) µ̄ f (l) = None. For all memory locations

l ∈ dom(µ f )\updated(ē′), µ f (l)=µ(l)≥Γ(l) µ̄(l)= µ̄ f (l). Hence µ f ≥Γ µ̄ f .

Subcase: µ(x) 6= 0. Then rule E-WHILE-TRUE applies.

µ(x) 6= 0 〈e′,µ〉 ⇓ 〈v,µ′〉 〈while x do e′,µ′〉 ⇓ 〈v′,µ′′〉
〈while x do e′,µ〉 ⇓ 〈v′,µ′′〉 E-WHILE-TRUE

From i.h. applied to (1) 〈e′,µ〉 ⇓ 〈v,µ′〉, (2) 〈∀l ∈ updated(ē′). l := None, µ̄〉 ⇓ 〈(), µ̄′〉, and
(3) µ≥Γ µ̄, we get µ′ ≥Γ µ̄′.
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Since updated(ē) = updated(ē′), 〈∀l ∈ updated(ē). l := None, µ̄′〉 ⇓ 〈(), µ̄′〉 and µ̄ f = µ̄′. Also
µ f = µ′′. For all memory locations l ∈ dom(µ f ) \ updated(ē′), µ f (l) = µ′(l) ≥Γ(l) µ̄

′(l) = µ̄ f (l). For
all memory locations l ∈ updated(ē′), µ̄ f (l)= None. Hence µ f (l)≥Γ(l) µ̄ f (l). Hence µ f ≥Γ µ̄ f .

Case: e = •e′. From rule T-UPGRADE, ē = Some ē′. Then updated(ē)= updated(ē′).
From i.h. applied to (1) 〈e′,µ〉 ⇓ 〈v,µ′〉, (2) 〈∀l ∈ updated(ē′). l := None, µ̄〉 ⇓ 〈(), µ̄′〉, and

(3) µ ≥Γ µ̄, we get µ′ ≥Γ µ̄′. Thus 〈∀l ∈ updated(Some ē′). l := None, µ̄〉 ⇓ 〈(), µ̄′〉. As µ f = µ′

and µ̄ f = µ̄′, it follows that µ f ≥Γ µ̄ f . ■

Proof of Theorem 35. By induction on the structure of the type-directed transformation pc `
Γ{e : τ ē}Γ′.

Suppose pc ` Γ{e : τ ē}Γ′, µ ≥Γ µ̄, and 〈e,µ〉 ⇓ 〈v f ,µ f 〉. We prove that 〈ē, µ̄〉 ⇓ 〈v̄ f , µ̄ f 〉,
where v f ≥τ v̄ f and µ f ≥Γ′ µ̄ f by induction on the derivation of the type-directed transformation
pc`Γ{e : τ ē}Γ′ and cases according to the last rule applied.

Case: T-VAL. From rule E-VAL it follows that v f = v and µ f = µ, and respectively, v̄ f = v and
µ̄ f = µ̄. Hence v f ≥τ v̄ f and µ f ≥Γ µ̄ f .

Case: T-VARLOC. From rule E-VARLOC it follows that v f = µ(l) and µ f = µ, and respectively,
v̄ f = µ̄(l) and µ̄ f = µ̄. As µ≥Γ µ̄, µ(l)≥Γ(l) µ̄(l). Thus v f ≥Γ′(l) v̄ f and µ f ≥Γ′ µ̄ f (Γ′ =Γ).

Case: T-EXP-L. From i.h. applied to: (1) pc ` Γ{e1 : IntL  ē1}Γ1, (2) 〈e1,µ〉 ⇓ 〈n1,µ1〉, and
(3) µ ≥Γ µ̄, we get that 〈ē1, µ̄〉 ⇓ 〈v̄1, µ̄1〉, with n1 ≥IntL v̄1 and µ1 ≥Γ1 µ̄1. From the rules in
Figures 4.7 and 4.8 it follows that v̄1 = n1.

From i.h. applied to: (4) pc ` Γ1{e2 : IntL ē2}Γ2, (5) 〈e2,µ1〉 ⇓ 〈n2,µ2〉, and (6) µ̄1 ≥Γ1 µ̄1,
we get that 〈ē2, µ̄1〉 ⇓ 〈v̄2, µ̄2〉, with n2 ≥IntL v̄2 and µ2 ≥Γ2 µ̄2. From the rules in Figures 4.7 and
4.8 it follows that v̄2 = n2.

By applying rule E-EXP, we obtain v̄ f = n1 ⊕n2 and µ̄ f = µ̄2:

〈ē1, µ̄〉 ⇓ 〈n1, µ̄1〉 〈ē2, µ̄1〉 ⇓ 〈n2, µ̄2〉
〈ē1 ⊕ ē2, µ̄〉 ⇓ 〈n1 ⊕n2, µ̄2〉

E-EXP

As v f = n1 ⊕n2 and µ f =µ2, it follows that v f ≥IntL v̄ f and µ f ≥Γ2 µ̄ f .

Case: T-EXP-H. From i.h. applied to: (1) pc ` Γ{e1 : IntH  ē1}Γ1, (2) 〈e1,µ〉 ⇓ 〈n1,µ1〉, and
(3) µ ≥Γ µ̄, we get that 〈ē1, µ̄〉 ⇓ 〈v̄1, µ̄1〉, with n1 ≥IntH v̄1 and µ1 ≥Γ1 µ̄1. From the rules in
Figures 4.7 and 4.8 it follows that v̄1 = Some n1 or v̄1 = None.

From i.h. applied to: (4) pc ` Γ1{e2 : IntH ē2}Γ2, (5) 〈e2,µ1〉 ⇓ 〈n2,µ2〉, and (6) µ1 ≥Γ1 µ̄1,
we get that 〈ē2, µ̄1〉 ⇓ 〈v̄2, µ̄2〉, with n2 ≥IntH v̄2 and µ2 ≥Γ2 µ̄2. From the rules in Figures 4.7 and
4.8 it follows that v̄2 = Some n2 or v̄2 = None. We distinguish four sub-cases:

Subcase: (v̄1, v̄2) = (Some n1,Some n2). The proof is similar to the one for case E-EXP, subcase
T-EXP-H, Theorem 34.

Subcase: (v̄1, v̄2) = (Some n1,None). From the derivation in Figure B.5 we get v̄ f = None and
µ̄ f = µ̄2. As v f = Some (n1 ⊕n2) and µ f =µ2, it follows that v f ≥IntH v̄ f and µ f ≥Γ2 µ̄ f .

Subcase: (v̄1, v̄2) = (None,Some n2). From the derivation in Figure B.6 we get v̄ f = None and
µ̄ f = µ̄2. As v f = Some (n1 ⊕n2) and µ f =µ2, it follows that v f ≥IntH v̄ f and µ f ≥Γ2 µ̄ f .

Subcase: (v̄1, v̄2)= (None,None). Similar to previous case.
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〈ē1, µ̄〉 ⇓ 〈Some n1, µ̄1〉
〈ē2, µ̄1〉 ⇓ 〈None, µ̄2〉

〈ē2, µ̄1 ∪ {x 7→ Some n1}〉 ⇓ 〈None, µ̄2 ∪ {x 7→ Some n1}〉 LEM. 33

µ̄′2(x)= Some n1

〈x, µ̄′2〉 ⇓ 〈Some n1, µ̄′2〉
E-VARLOC

(µ̄′2 ∪ {x′ 7→ n1})(y)= None

〈y, µ̄′2 ∪ {x′ 7→ n1}〉 ⇓ 〈None, µ̄′2 ∪ {x′ 7→ n1}〉 E-VARLOC

〈None, µ̄′2 ∪ {x′ 7→ n1}〉 ⇓ 〈None, µ̄′2 ∪ {x′ 7→ n1}〉 E-VAL

〈case y of None. None Some y′. Some (x′⊕ y′), µ̄′2 ∪ {x′ 7→ n1}〉 ⇓ 〈None, µ̄′2 ∪ {x′ 7→ n1}〉 E-CASE-INL

〈case x of None. None
〈case x of Some x′. case y of None. None Some y′. Some (x′⊕ y′), µ̄′2〉 ⇓ 〈Some (n1 ⊕n2), µ̄′2〉

E-CASE-INR

〈let y= ē2 in

case x of None. None Some x′. (case y of None. None Some y′. Some (x′⊕ y′)), µ̄′1〉 ⇓ 〈None, µ̄2 ∪ {x 7→ Some n1}〉
E-LET

〈let x = ē1 in let y= ē2 in

case x of None. None Some x′. (case y of None. None Some y′. Some (x′⊕ y′)), µ̄〉 ⇓ 〈Some (n1 ⊕n2), µ̄2〉
E-LET

where µ̄′1 = µ̄1 ∪ {x 7→ Some n1} and µ̄′2 = µ̄2 ∪ {x 7→ Some n1, y 7→ None}.

Figure B.5: Concluding derivation, case T-EXP-H, subcase (v̄1, v̄2) = (Some n1,None), Theo-
rem 35.

Case: T-ASSIGN. From i.h. applied to: (1) pc`Γ{e′ : τ ē′}Γ′, (2) 〈e′,µ〉 ⇓ 〈v,µ′〉, and (3) µ≥Γ µ̄,
we get that 〈ē′, µ̄〉 ⇓ 〈v̄, µ̄′〉, with v ≥τ v̄ and µ′ ≥Γ′ µ̄′.

By applying rule E-ASSIGN, we get v̄ f = () and µ̄ f = µ̄′[l 7→ v̄]:

〈ē′, µ̄〉 ⇓ 〈v̄, µ̄′〉
〈l := ē′, µ̄〉 ⇓ 〈(), µ̄′[l 7→ v̄]〉 E-ASSIGN

Thus v f = () ≥UnitL () = v̄ f . We are left to show that µ′[l 7→ v] ≥Γ′[l 7→τ] µ̄
′[l 7→ v̄]. From i.h.

µ′ ≥Γ′ µ̄′ and v ≥τ v̄. Hence µ′[l 7→ v](l) ≥l:τ µ̄
′[l 7→ v̄](l). Since for all l ∈ Γ′, µ′(l) ≥Γ′(l) µ̄

′, we get
that µ′[l 7→ v]≥Γ′[l 7→τ] µ̄

′[l 7→ v̄].

Case: T-INL. From i.h. applied to: (1) pc`Γ{e′ : τ1 ē′}Γ′, (2) 〈e′,µ〉 ⇓ 〈v,µ′〉, and (3) µ≥Γ µ̄, we
get that 〈ē′, µ̄〉 ⇓ 〈v̄, µ̄′〉, with v ≥τ1 v̄ and µ′ ≥Γ′ µ̄′.

By applying rule E-INL, we get v̄ f = inl v̄ and µ̄ f = µ̄′:

〈ē′, µ̄〉 ⇓ 〈v̄, µ̄′〉
〈inl ē′, µ̄〉 ⇓ 〈inl v̄, µ̄′〉 E-INL

As v f = inl v and µ f = µ′, it follows that v f = inl v ≥(τ1+τ2)L inl v̄ = v̄ f (from Figures 4.7
and 4.8) and µ f =µ′ ≥Γ′ µ̄′ = µ̄ f (from i.h.).

Case: T-INR. Similar to case T-INL.

Case: T-LET. From i.h. applied to: (1) pc`Γ{e1 : τ1 ē1}Γ1, (2) 〈e1,µ〉 ⇓ 〈v1,µ1〉, and (3) µ≥Γ µ̄,
we get that 〈ē1, µ̄〉 ⇓ 〈v̄1, µ̄1〉, with v1 ≥τ1 v̄1 and µ1 ≥Γ1 µ̄1. Thus µ1∪{x 7→ v1}≥Γ1,x:τ1 µ̄1∪{x 7→ v̄1}.
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〈ē1, µ̄〉 ⇓ 〈None, µ̄1〉
〈ē2, µ̄1〉 ⇓ 〈Some n2, µ̄2〉

〈ē2, µ̄1 ∪ {x 7→ None}〉 ⇓ 〈Some n2, µ̄2 ∪ {x 7→ None}〉 LEM. 33

〈let y= ē2 in

case x of None. None
case x of Some x′. (case y of None. None Some y′. Some (x′⊕ y′)), µ̄′1〉 ⇓ 〈None, µ̄′2 ∪ {x 7→ Some n1}〉

E-LET

〈let x = ē1 in let y= ē2 in

case x of None. None
case x of Some x′. (case y of None. None Some y′. Some (x′⊕ y′)), µ̄〉 ⇓ 〈Some (n1 ⊕n2), µ̄2〉

E-LET

where µ̄′1 = µ̄1 ∪ {x 7→ None}.

Figure B.6: Concluding derivation, case T-EXP-H, subcase (v̄1, v̄2) = (None,Some n2), Theo-
rem 35.

From i.h. applied to: (4) pc ` Γ1, x : τ1{e2 : τ2 ē2}Γ2, (5) 〈e2,µ1 ∪ {x 7→ v1}〉 ⇓ 〈v2,µ2〉, and
(6) µ1 ∪ {x 7→ v1}≥Γ1,x:τ1 µ̄1 ∪ {x 7→ v̄1}, we get that 〈ē2, µ̄1 ∪ {x 7→ v̄1}〉 ⇓ 〈v̄2, µ̄2〉, with v2 ≥τ2 v̄2 and
µ2 ≥Γ2 µ̄2. Hence µ2 \{x}≥Γ2\{x} µ̄2 \{x}.

By applying rule E-LET we get v̄ f = v̄2 and µ̄ f = µ̄2 \{x}:

〈ē1, µ̄〉 ⇓ 〈v̄1, µ̄1〉 〈ē2, µ̄1 ∪ {x 7→ v̄1}〉 ⇓ 〈v̄2, µ̄2〉
〈let x = ē1 in ē2,µ〉 ⇓ 〈v̄2, µ̄2\{x}〉 E-LET

As v f = v2 and µ f =µ2 \{x}, it follows that v f ≥τ2 v̄ f and µ f ≥Γ2\{x} µ̄ f .

Case: T-CASE-L. We assume expression e′ evaluates under rule E-CASE-INL. When it evalu-
ates under rule E-CASE-INR, the reasoning and proof are analogous.

From i.h. applied to: (1) pc` Γ{e′ : (τ1 +τ2)L ē′}Γ′, (2) 〈e′,µ〉 ⇓ 〈inl v1,µ1〉, and (3) µ≥Γ µ̄,
we get that 〈ē′, µ̄〉 ⇓ 〈v̄, µ̄1〉, with inl v1 ≥(τ1+τ2)L v̄ and µ1 ≥Γ′ µ̄1. From the rules in Figures 4.7
and 4.8 it follows that v̄ = inl v̄1, with v1 ≥τ1 v̄1. As µ1 ≥Γ′ µ̄1, µ1∪ {x 7→ v1}≥Γ′,x:τ1 µ̄1∪ {x 7→ v̄1}.

From i.h. applied to: (4) pc ` Γ′, x : τ1{e1 : τ ē1}Γ1, (5) 〈e1,µ1 ∪ {x 7→ v1}〉 ⇓ 〈v2,µ2〉, and
(6) µ1 ∪ {x 7→ v1} ≥Γ′,x:τ1 µ̄1 ∪ {x 7→ v̄1}, we get that 〈ē1, µ̄1 ∪ {x 7→ v̄1}〉 ⇓ 〈v̄2, µ̄2〉, with v2 ≥τ v̄2 and
µ2 ≥Γ1 µ̄2. Hence µ2 \{x}≥Γ1\{x} µ̄2 \{x}.

From the derivation below it follows that v̄ f = v̄2 and µ̄ f = µ̄3 \{x, y}:

E-CASE-INL

〈ē′, µ̄〉 ⇓ 〈inl v̄1, µ̄1〉

〈ē1, µ̄1 ∪ {x 7→ v̄1}〉 ⇓ 〈v̄2, µ̄2〉

〈upgrade(S2), µ̄2 ∪ {y 7→ v̄2〉 ⇓ 〈(), µ̄3〉
E-ASSIGN∗ µ̄3(y)= v̄2

〈y, µ̄3〉 ⇓ 〈v̄2, µ̄3〉
E-VAR

〈upgrade(S2); y, µ̄2 ∪ {y 7→ v̄2〉 ⇓ 〈v̄2, µ̄3〉
E-SEQ

〈let y= ē1 in upgrade(S2); y, µ̄1 ∪ {x 7→ v̄1}〉 ⇓ 〈v̄2, µ̄3 \{y}〉 E-LET

〈case ē′ of inl x. let y= ē1 in upgrade(S2); y inr x. let y= ē2 in upgrade(S1); y, µ̄〉 ⇓ 〈v̄2, µ̄3 \{y, x}〉
As v f = v2, v f ≥τ v̄ f . Since µ f =µ2 \{x}, it remains to show that µ2 \{x}≥⊔

Γi\{x} µ̄3 \{x, y}.
If high(Γ) represents the set of all memory locations and variables with high type in Γ,

and low(Γ) represents the set of all memory locations and variables with low type in Γ, then
S2 = high(Γ2)\ low(Γ1). Hence for all l ∈ S2, Γ1(l)=σL and Γ2(l)=σH .
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E-CASE-INL
〈ē′, µ̄〉 ⇓ 〈None, µ̄1〉

〈∀l ∈ updated(ē1, ē2).l := None, µ̄1〉 ⇓ 〈(), µ̄2〉
E-ASSIGN∗

〈None, µ̄2〉 ⇓ 〈None, µ̄2〉
E-VAL

〈∀l ∈ updated(ē1, ē2). l := None;None, µ̄1〉 ⇓ 〈None, µ̄2〉
E-SEQ

〈case ē′ of None. (∀l ∈ updated(ē1, ē2). l := None); None
〈case ē of Some x′. case x′ of inl x. let y= ē1 in upgrade(S2); y inr x. let y= ē2 in upgrade(S1); y, µ̄〉〈None, µ̄2〉

Figure B.7: Concluding derivation, case T-CASE-H, subcase v̄ = None, Theorem 35.

From i.h., µ2 ≥Γ1 µ̄2. Hence, for all l ∈ dom(Γ1), µ2(l) ≥Γ1(l) µ̄2(l). Thus for all l ∈ S2,
µ2(l) ≥σL µ̄2(l), for some σ. From the rules in Figure 4.8 it follows that for all l ∈ S2, µ2(l) ≥σH

Some µ̄2(l). Upgrading the memory locations from S2 corresponds to setting the label to H
for all the types labeled L in Γ1, but labeled H in Γ2, i.e. ∀l ∈ S2, Γ1[l 7→ σH] = (Γ1 tΓ2)(l),
given that Γ1(l) = σL. Thus for all l ∈ S2, µ2(l) ≥(Γ1tΓ2)(l) Some µ̄2(l) = µ̄3(l). Hence µ2 ≥⊔

Γi\{x}
µ̄3 \{x, y}.

Case: T-CASE-H. The transformation derivation is of the form:

T-CASE-H

pc`Γ{e : (τ1 +τ2)H ē}Γ′ H `Γ′, x : τi{e i : τ ē i}Γi i = 1,2 S1 =Γ1 \Γ2 S2 =Γ2 \Γ1

pc`Γ{case e of inl x. e1 inr x. e2 : τ 
pc`Γ{case ē of None. (∀l ∈ updated(ē1, ē2). l := None); None
pc`Γ{case ē of Some x′. case x′ of inl x. let y= ē1 in upgrade(S2); y
pc`Γ{case ē of Some x′. case x′ of inr x. let y= ē2 in upgrade(S1); y}

⊔
Γi \{x}

We assume expression e′ evaluates under rule E-CASE-INL. When it evaluates under rule
E-CASE-INR, the reasoning and proof are analogous.

From i.h. applied to: (1) pc`Γ{e′ : (τ1 +τ2)H ē′}Γ′, (2) 〈e′,µ〉 ⇓ 〈inl v1,µ1〉, and (3) µ≥Γ µ̄,
we get that 〈ē′, µ̄〉 ⇓ 〈v̄, µ̄1〉, with inl v1 ≥(τ1+τ2)H v̄ and µ1 ≥Γ′ µ̄1. From the rules in Figures 4.7
and 4.8 it follows that v̄ = Some inl v̄1, with v1 ≥τ1 v̄1, or v̄ = None. We distinguish two subcases:

Subcase: v̄ = Some inl v̄1. Proof similar to previous case.

Subcase: v̄ = None. From the derivation in Figure B.7 it follows that v̄ f = None and µ̄ f = µ̄2.
Let v̄1 be such that v1 ≥τ1 v̄1. Then µ1 ∪ {x 7→ v1} ≥Γ1,x:τ1 µ̄1 ∪ {x 7→ v̄1}. From Lemma 36

applied to (4) H ` Γ′, x : τ1{e1 : τ ē1}Γ1, (5) 〈e1,µ1 ∪ {x 7→ v1}〉 ⇓ 〈v2,µ2〉, and (6) µ1 ∪ {x 7→
v1}≥Γ1,x:τ1 µ̄1∪{x 7→ v̄1}, we get that 〈∀l ∈ updated(ē1). l := None;None, µ̄1∪{x 7→ v̄1〉 ⇓ 〈None, µ̄′1∪
{x 7→ v̄1}〉 with µ2 \{x}≥Γ1\{x} µ̄

′
1. I.e. 〈∀l ∈ updated(ē1). l := None;None, µ̄1〉 ⇓ 〈None, µ̄′1〉.

Since µ f =µ2, µ f ≥Γ1\{x} µ̄
′
1. I.e., for all l ∈ updated(ē1), µ f (l)≥Γ1\{x} µ̄

′
1(l)= None= µ̄ f (l).

If we denote by S the set of memory locations updated in both branches, and by S′ the
set of memory locations upgraded in both branches, then updated(ē1) = updated(S,S1,S′) and
updated(ē1, ē2) = updated(S,S1,S2,S′). Hence, for all l ∈ S2, Γ1(l) = σL, for some σ, but (Γ1 t
Γ2)(l) = σH . Also, for all l ∈ S2, µ f (l) ≥(Γ1tΓ2)(l) None = µ̄ f (l). In addition, for all l ∈ dom(µ f ) \
(S∪S1 ∪S2 ∪S′), µ f (l)=µ1(l)≥Γ′(l)=(

⊔
Γi\{x})(l)= µ̄1(l)= µ̄ f (l). Hence µ f ≥⊔

Γi\{x} µ̄ f .
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Case: T-WHILE-L. The transformation derivation is of the form:

Γ(x)= IntL pc`Γ{e : τ ē}Γ

pc`Γ{while x do e : UnitL while x do ē}Γ
T-WHILE-L

As µ≥Γ µ̄ and Γ(x) = IntL, from the rules in Figures 4.7 and 4.8 it follows that µ̄(x) = µ(x).
For the evaluation rules, we distinguish two cases:

Subcase: E-WHILE-TRUE. The evaluation derivation is of the form:

µ(x) 6= 0 〈e,µ〉 ⇓ 〈v,µ′〉 〈while x do e,µ′〉 ⇓ 〈v′,µ′′〉
〈while x do e,µ〉 ⇓ 〈v′,µ′′〉 E-WHILE-TRUE

From i.h. applied to: (1) pc ` Γ{e : τ ē}Γ, (2) 〈e,µ〉 ⇓ 〈v,µ′〉, and (3) µ ≥Γ µ̄, we get that
〈ē, µ̄〉 ⇓ 〈v̄, µ̄′〉, with v ≥τ v̄ and µ′ ≥Γ µ̄′.

From i.h. applied to: (4) pc ` Γ{while x do e : τ while x do ē}Γ, (5) 〈while x do e,µ′〉 ⇓
〈v′,µ′′〉, and (6) µ′ ≥Γ µ̄′, we get that 〈while x do ē, µ̄′〉 ⇓ 〈v̄′, µ̄′′〉, with v′ ≥UnitL v̄′ and µ′′ ≥Γ µ̄′′.

By applying rule E-WHILE-TRUE we get that v̄ f = v̄′ and µ̄ f = µ̄′′:

〈x, µ̄〉 ⇓ 〈µ(x), µ̄〉 〈ē, µ̄〉 ⇓ 〈v̄, µ̄′〉 〈while x do ē, µ̄′〉 ⇓ 〈v̄′, µ̄′′〉
〈while x do ē, µ̄〉 ⇓ 〈v̄′, µ̄′′〉 E-WHILE-TRUE

As v f = v′ and µ f =µ′′, it follows that v f ≥UnitL v̄ f and µ f ≥Γ µ̄ f .

Subcase: E-WHILE-FALSE. By applying rule E-WHILE-FALSE we get that v̄ f = () and µ̄ f = µ̄:

〈µ̄, x〉 ⇓ 〈0, µ̄〉
〈while x do ē, µ̄〉 ⇓ 〈(), µ̄〉 E-WHILE-FALSE

As v f = () and µ f =µ′, it follows that v f ≥UnitL v̄ f and µ f ≥Γ µ̄ f .

Case: T-WHILE-H. The transformation derivation is of the form:

Γ(x)= IntH H `Γ{e : τ ē}Γ

pc`Γ{while x do e : UnitL 
pc`Γ{while (case x of None. ∀l ∈ updated(ē). l := None; 0 Some y. y) do ē}Γ

T-WHILE-H

As µ ≥Γ µ̄ and Γ(x) = IntL, from the rules in Figures 4.7 and 4.8 it follows that µ̄(x) =
Some µ(x) or µ̄(x)= None. For the evaluation rules we distinguish two cases:

Subcase: E-WHILE-TRUE. The evaluation derivation is of the form:

µ(x) 6= 0 〈e,µ〉 ⇓ 〈v,µ′〉 〈while x do e,µ′〉 ⇓ 〈v′,µ′′〉
〈while x do e,µ〉 ⇓ 〈v′,µ′′〉 E-WHILE-TRUE

• µ̄(x)= Some µ(x)
From i.h. applied to: (1) pc ` Γ{e : τ ē}Γ, (2) 〈e,µ〉 ⇓ 〈v,µ′〉, and (3) µ ≥Γ µ̄, we get that

〈ē, µ̄〉 ⇓ 〈v̄, µ̄′〉, with v ≥τ v̄ and µ′ ≥Γ µ̄′.
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By applying rule E-WHILE-TRUE we get that v̄ f = v̄′ and µ̄ f = µ̄′′:
E-WHILE-TRUE

〈x, µ̄〉 ⇓ 〈Some µ(x), µ̄〉
(µ̄∪ {y 7→µ(x)})(y)=µ(x)

〈y, µ̄∪ {y 7→µ(x)}〉 ⇓ 〈µ(x), µ̄∪ {y 7→µ(x)}〉 E-VARLOC

〈case x of None. ∀l ∈ updated(ē). l := None;0 Some y. y, µ̄〉 ⇓ 〈µ(x), µ̄〉 E-CASE-INR

〈ē, µ̄〉 ⇓ 〈v̄, µ̄′〉
〈while (case x of None. ∀l ∈ updated(ē). l := None;0 Some y. y) do ē, µ̄′〉 ⇓ 〈v̄′, µ̄′′〉

〈while (case x of None. ∀l ∈ updated(ē). l := None;0 Some y. y) do ē, µ̄〉 ⇓ 〈v̄′, µ̄′′〉
From i.h. applied to: (4) pc`Γ{while x do e : τ while (case x of None. ∀l ∈ updated(ē). l :=

None;0 Some y. y) do ē}Γ, (5) 〈while x do e,µ′〉 ⇓ 〈v′,µ′′〉, and (6) µ′ ≥Γ µ̄′, we get that
〈while (case x of None. ∀l ∈ updated(ē). l := None;0 Some y. y) do ē, µ̄′〉 ⇓ 〈v̄′, µ̄′′〉, with v′ ≥UnitL

v̄′ and µ′′ ≥Γ µ̄′′.
As v f = v′ and µ f =µ′′, it follows that v f ≥UnitL v̄ f and µ f ≥Γ µ̄ f .

• µ̄(x)= None

From the derivation below, v̄ f = () and µ̄ f = µ̄′:
E-WHILE-FALSE
〈x, µ̄〉 ⇓ 〈None, µ̄〉

〈∀l ∈ updated(ē). l := None, µ̄〉 ⇓ 〈(), µ̄′〉 E-ASSIGN∗
〈0, µ̄′〉 ⇓ 〈0, µ̄′〉 E-VAL

〈∀l ∈ updated(ē). l := None;0, µ̄′〉 ⇓ 〈0, µ̄′〉 E-SEQ

〈case x of None. ∀l ∈ updated(ē). l := None;0 Some y. y, µ̄〉 ⇓ 〈0, µ̄′〉 E-CASE-INL

〈while (case x of None. ∀l ∈ updated(ē).l := None;0 Some y. y) do ē, µ̄〉 ⇓ 〈(), µ̄′〉

We apply Lemma 36 to (4) H ` Γ{e : τ ē}Γ (5) 〈e,µ〉 ⇓ 〈v,µ′〉, and (6) µ ≥Γ µ̄, and we get
〈∀l ∈ updated(ē). l := None; µ̄〉 ⇓ 〈(), µ̄′〉, with µ′ ≥Γ µ̄′.

As updated(while x do e) = updated(ē) and ∀l ∈ updated(ē), µ̄ f (l) = None, we have that
µ f (l)≥Γ(l) µ̄ f (l). Since for all l ∈ dom(µ f )\updated(ē), µ f (l)=µ′(l)≥Γ(l) µ̄

′(l)= µ̄ f (l), µ f ≥Γ µ̄ f .

Subcase: E-WHILE-FALSE. The evaluation derivation is of the form:

µ(x)= 0

〈while x do e,µ〉 ⇓ 〈(),µ〉 E-WHILE-FALSE

• µ̄(x)= Some 0
From the derivation below it follows that v̄ f = () and µ̄ f = µ̄:

〈x, µ̄〉 ⇓ 〈Some 0, µ̄〉
(µ̄∪ {y 7→ 0})(x)= 0

〈y, µ̄∪ {y 7→ 0}〉 ⇓ 〈0, µ̄∪ {y 7→ 0}〉 E-VARLOC

〈case x of None. ∀l ∈ updated(ē). l := None;0 Some y. y, µ̄〉 ⇓ 〈0, µ̄〉 E-CASE-INR

〈while (case x of None. ∀l ∈ updated(ē). l := None;0 Some y. y) do ē, µ̄〉 ⇓ 〈(), µ̄〉 E-WHILE-FALSE

As v f = () and µ f =µ′, it follows that v f ≥UnitL v̄ f and µ f ≥Γ µ̄′f .
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• µ̄(x)= None

E-WHILE-FALSE
〈x, µ̄〉 ⇓ 〈None, µ̄〉

〈∀l ∈ updated(ē). l := None, µ̄〉 ⇓ 〈(), µ̄′〉 E-ASSIGN∗
〈0, µ̄′〉 ⇓ 〈0, µ̄′〉 E-VAL

〈∀l ∈ updated(ē). l := None;0, µ̄′〉 ⇓ 〈0, µ̄′〉 E-SEQ

〈case x of None. ∀l ∈ updated(ē). l := None;0 Some y. y, µ̄〉 ⇓ 〈0, µ̄′〉 E-CASE-INL

〈while (case x of None. ∀l ∈ updated(ē).l := None;0 Some y. y) do ē, µ̄〉 ⇓ 〈(), µ̄′〉

As µ f = µ, it remains to show that µ≥Γ µ̄′. Since for all l ∈ updated(ē), Γ(l) = σH , for some
σ, and for all l ∈ dom(µ f )\updated(ē), µ f (l)=µ(l)≥Γ(l) µ̄(l)= µ̄ f (l), µ f ≥Γ µ̄ f .

Case: T-UPGRADE. From i.h. applied to: (1) pc ` Γ{e :σL ē}Γ, (2) 〈e,µ〉 ⇓ 〈v,µ′〉, and (3) µ≥Γ
µ̄, we get that 〈ē, µ̄〉 ⇓ 〈v̄, µ̄′〉, with v ≥σL v̄ and µ′ ≥Γ′ µ̄′.

By applying rule E-INR we get that v̄ f = Some v̄ and µ̄ f = µ̄′:

〈ē, µ̄〉 ⇓ 〈v̄, µ̄′〉
〈Some ē, µ̄〉 ⇓ 〈Some v̄, µ̄′〉 E-INR

Hence v ≥σH Some v̄ (from Figures 4.7 and 4.8) and µ′ ≥Γ′ µ̄′. ■
Theorem 37 (Monotonicity of ē). For any source program e, typing context Γ, program counter
pc, and memories µ̄, and µ̄′ such that pc ` Γ{e : τ ē}Γ′, and µ̄ ≥ µ̄′, if 〈ē, µ̄〉 ⇓ 〈v̄ f , µ̄ f 〉 and
〈ē, µ̄′〉 ⇓ 〈v̄′f , µ̄′f 〉, then v̄ f ≥ v̄′f and µ̄ f ≥ µ̄′f .

The proof of this theorem relies on the following helper lemma.

Lemma 38 (Helper). For any source program e, typing environment Γ, and stores µ̄ and µ̄′ such
that µ̄≥ µ̄′, if H `Γ{e : τ ē}Γ′ and 〈ē, µ̄〉 ⇓ 〈v̄ f , µ̄ f 〉, then 〈∀l ∈ updated(ē). l := None, µ̄′〉 ⇓ 〈(), µ̄′f 〉
and µ̄ f ≥ µ̄′f .

Proof. By induction on the structure of e. The proof is similar with the one for Lemma 36 and
we do not include it here.

Case: e = v. From rule T-VAL, ē = v. Then updated(v) =;. From E-VAL, µ̄ f = µ̄. As µ̄′f = µ̄′, it
follows that µ̄ f ≥ µ̄′f .

Case: e = l. From rule T-VARLOC, ē = l. Then updated(l) = ;. From E-VARLOC, µ̄ f = µ̄. As
µ̄′f = µ̄′, it follows that µ̄ f ≥ µ̄′f .

Case: e = e1 ⊕ e2. From rule T-EXP-*, updated(ē)= updated(ē1, ē2).
From i.h. applied to (1) 〈e1,µ〉 ⇓ 〈n1,µ1〉, (2) 〈∀l ∈ updated(ē1). l := None; 0, µ̄〉 ⇓ 〈0, µ̄1〉, and

(3) µ≥ µ̄, we get µ1 ≥ µ̄1.
From i.h. applied to (4) 〈e2,µ1〉 ⇓ 〈n2,µ2〉, (5) 〈∀l ∈ updated(ē2). l := None; 0, µ̄1〉 ⇓ 〈0, µ̄2〉,

and (6) µ1 ≥ µ̄1, we get µ2 ≥ µ̄2.
Thus 〈∀l ∈ updated(ē1, ē2). l := None;0, µ̄〉 ⇓ 〈0, µ̄2〉, with µ̄ f = µ̄2. As µ f = µ2, it follows that

µ f ≥ µ̄ f .

Case: e = l := e′. From rule T-ASSIGN, ē = l := ē′. Then updated(ē)= updated(ē′, l).
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From i.h. applied to (1) 〈e′,µ〉 ⇓ 〈v,µ′〉, (2) 〈∀l ∈ updated(ē′). l := None;0, µ̄〉 ⇓ 〈0, µ̄′〉, and
(3) µ≥ µ̄, we get µ′ ≥ µ̄′. I.e. 〈∀l′ ∈ updated(ē′, l). l′ := None;0, µ̄〉 ⇓ 〈0, µ̄′[l 7→ None]〉.

As v ≥ None, it follows that (µ′[l 7→ v])(l) ≥ (µ̄′[l 7→ None])(l). As µ f = µ′[l 7→ v] and µ̄ f =
µ̄′[l 7→ None], it follows that µ f ≥ µ̄ f .

Case: e = inl e′. From rule T-INL, ē = inl ē′. Then updated(ē)= updated(ē′).
From i.h. applied to (1) 〈e′,µ〉 ⇓ 〈v,µ′〉, (2) 〈∀l ∈ updated(ē′). l := None;0〉 ⇓ 〈0, µ̄′〉, and (3) µ≥

µ̄, we get µ′ ≥ µ̄′. Thus 〈∀l ∈ updated(inl ē′). l := None;0, µ̄〉 ⇓ 〈0, µ̄′〉. As µ f = µ′ and µ̄ f = µ̄′, it
follows that µ f ≥ µ̄ f .

Case: e = inr e′. Similar to the previous case.

Case: e = let x = e1 in e2. From rule T-LET, ē = let x = ē1 in ē2. Then updated(ē) =
updated(ē1, ē2).

From i.h. applied to (1) 〈e1,µ〉 ⇓ 〈v1,µ1〉, (2) 〈∀l ∈ updated(ē1). l := None;0, µ̄〉 ⇓ 〈0, µ̄1〉, and
(3) µ≥ µ̄, we get µ1 ≥ µ̄1.

Let v̄1 be such that v1 ≥ v̄1. Hence, µ1 ∪ {x 7→ v1}≥ µ̄1 ∪ {x 7→ v̄1}.
From i.h. applied to (4) 〈e2,µ1 ∪ {x 7→ v1}〉 ⇓ 〈v2,µ2〉, (5) 〈∀l ∈ updated(ē2). l := None;0, µ̄1 ∪

{x 7→ v̄1}〉 ⇓ 〈0, µ̄2〉, and (6) µ1 ∪ {x 7→ v1}≥ µ̄1 ∪ {x 7→ v̄1}, we get µ2 ≥ µ̄2. I.e. µ2 \{x}≥ µ̄2 \{x}.
But x 6∈ updated(ē2). Thus 〈∀l ∈ updated(ē2). l := None;0, µ̄1〉 ⇓ 〈0, µ̄2 \ {x}〉. Hence 〈∀l ∈

updated(ē1, ē2). l := None;0, µ̄〉 ⇓ 〈0, µ̄2 \ {x}〉. As µ f = µ2 \ {x} and µ̄ f = µ̄2 \ {x}, it follows that
µ f ≥ µ̄ f .

Case: e = case e′ of inl x. e1 inr x. e2. From rule T-CASE-*, updated(ē)= updated(ē′, ē1, ē2).
From i.h. applied to (1) 〈e′,µ〉 ⇓ 〈v,µ1〉, (2) 〈∀l ∈ updated(ē′). l := None;0, µ̄〉 ⇓ 〈0, µ̄1〉, and

(3) µ≥ µ̄, we get µ1 ≥ µ̄1.
We assume e evaluates under rule E-CASE-INL. (For the case when it evaluates under rule

E-CASE-INR, the proof is analoguous.) Hence, v = inl v1. Let v̄1 be such that v1 ≥ v̄1. Then
µ1 ∪ {x 7→ v1}≥ µ̄1 ∪ {x 7→ v̄1}.

From i.h. applied to (4) 〈e1,µ1 ∪ {x 7→ v1}〉 ⇓ 〈v2,µ2〉, (5) 〈∀l ∈ updated(ē1). l := None;0, µ̄1 ∪
{x 7→ v̄1}〉 ⇓ 〈0, µ̄2〉, and (6) µ1 ∪ {x 7→ v1}≥ µ̄1 ∪ {x 7→ v̄1}, we get µ2 ≥ µ̄2. Hence, µ2 \{x}≥ µ̄2 \{x}.

Since x 6∈ updated(ē1), it follows that 〈∀l ∈ updated(ē1). l := None;0, µ̄1〉 ⇓ 〈0, µ̄2 \{x}〉.
From 〈∀l ∈ updated(ē2). l := None;0, µ̄2 \ {x}〉 ⇓ 〈0, µ̄3〉, µ̄ f = µ̄3. But µ f = µ2 \ {x}. We show

below that µ f =µ2 \{x}≥ µ̄3 = µ̄ f .
For all memory locations l ∈ updated(ē2), µ f (l) ≥ µ̄ f (l) = None. For all memory locations

l ∈ dom(µ f )\updated(ē2), µ f (l)= (µ2 \{x})(l)≥ (µ̄2 \{x})(l)= µ̄ f (l). Thus µ f ≥ µ̄ f .

Case: e = while x do e′. From rule T-WHILE-*, updated(ē)= updated(ē′).
We distinguish two subcases:

Subcase: µ(x)= 0. Then rule E-WHILE-FALSE applies and µ f =µ.
From 〈∀l ∈ updated(ē′). l := None;0, µ̄〉 ⇓ 〈0, µ̄′〉, µ̄ f = µ̄′. We show below that µ f ≥ µ̄ f .
For all memory locations l ∈ updated(ē′), µ f (l) ≥ µ̄ f (l) = None. For all memory locations

l ∈ dom(µ f )\updated(ē′), µ f (l)=µ(l)≥ µ̄(l)= µ̄ f (l). Hence µ f ≥ µ̄ f .

Subcase: µ(x) 6= 0. Then rule E-WHILE-TRUE applies.

µ(x) 6= 0 〈e′,µ〉 ⇓ 〈v,µ′〉 〈while x do e′,µ′〉 ⇓ 〈v′,µ′′〉
〈while x do e′,µ〉 ⇓ 〈v′,µ′′〉 E-WHILE-TRUE
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From i.h. applied to (1) 〈e′,µ〉 ⇓ 〈v,µ′〉, (2) 〈∀l ∈ updated(ē′). l := None;0, µ̄〉 ⇓ 〈0, µ̄′〉, and
(3) µ≥ µ̄, we get µ′ ≥ µ̄′.

Since updated(ē) = updated(ē′), 〈∀l ∈ updated(ē). l := None;0, µ̄′〉 ⇓ 〈0, µ̄′〉 and µ̄ f = µ̄′. Also
µ f = µ′′. For all memory locations l ∈ dom(µ f ) \ updated(ē′), µ f (l) = µ′(l) ≥ µ̄′(l) = µ̄ f (l). For all
memory locations l ∈ updated(ē′), µ̄( f )= None. Hence µ f (l)≥ µ̄ f (l). Hence µ f ≥ µ̄ f .

Case: e = •e′. From rule T-UPGRADE, ē = Some ē′. Then updated(ē)= updated(ē′).
From i.h. applied to (1) 〈e′,µ〉 ⇓ 〈v,µ′〉, (2) 〈∀l ∈ updated(ē′). l := None;0, µ̄〉 ⇓ 〈0, µ̄′〉, and

(3) µ ≥ µ̄, we get µ′ ≥ µ̄′. Thus 〈∀l ∈ updated(Some ē′). l := None;0〉 ⇓ 〈0, µ̄′〉. As µ f = µ′ and
µ̄ f = µ̄′, it follows that µ f ≥ µ̄ f . ■

Proof of Theorem 37. By induction on the derivation of the type-directed transformation and
on the derivation of the evaluation relation 〈ē, µ̄〉 ⇓ 〈v̄ f , µ̄ f 〉. We present the proof only for the
more important cases.

Case T-CASE-L. The transformation derivation is of the form:

T-CASE-L

pc`Γ{e : (τ1 +τ2)L ē}Γ′ pc`Γ′, x : τi{e i : τ ē i}Γi i = 1,2 S1 =Γ1 \Γ2 S2 =Γ2 \Γ1

pc`Γ{case e of inl x. e1 inr x. e2 : τ 
pc`Γ{case ē of inl x. let y= ē1 in upgrade(S2); y inr x. let y= ē2 in upgrade(S1); y

⊔
Γi \{x}

From i.h. and Theorem 35, 〈ē, µ̄〉 ⇓ 〈v̄, µ̄1〉, 〈ē, µ̄′〉 ⇓ 〈v̄, µ̄′1〉 and µ̄1 ≥ µ̄′1. We assume ē evalu-
ates under rule E-CASE-INL, i.e. v̄ = inl v. For the case when ē evaluates under rule E-CASE-
INR, the proof is analogous.

We are left to show that if 〈let y= ē1;upgrade(S2); y in , µ̄1∪{x 7→ v}〉 ⇓ 〈v̄ f , µ̄ f 〉 and 〈let y=
ē1;upgrade(S2); y in , µ̄′1 ∪ {x 7→ v}〉 ⇓ 〈v̄′f , µ̄′f 〉, then v̄ f ≥ v̄′f and µ̄ f ≥ µ̄′f .

As µ̄1 ≥ µ̄′1 and v = v, µ̄1 ∪ {x 7→ v}≥ µ̄′1 ∪ {x 7→ v}.

〈ē1, µ̄1 ∪ {x 7→ v}〉 ⇓ 〈v̄2, µ̄2〉
I.H.

〈upgrade(S2), µ̄2 ∪ {y 7→ v̄2}〉 ⇓ 〈(), µ̄3〉
E-ASSIGN∗ µ̄3(y)= v̄2

〈y, µ̄3〉 ⇓ 〈v̄2, µ̄3〉
E-VAR

〈upgrade(S2); y, µ̄3〉 ⇓ 〈v̄ f , µ̄3〉
E-SEQ

〈let y= ē1;upgrade(S2); y in , µ̄1 ∪ {x 7→ v}〉 ⇓ 〈v̄ f , µ̄3 \{y}〉 E-LET

From i.h., v̄2 ≥ v̄′2 and µ̄2 ≥ µ̄′2. Hence µ̄2 ∪ {y 7→ v2} ≥ µ̄′2 ∪ {y 7→ v′2}. For all l ∈ upgrade(S2),
µ̄2(l) = µ̄′2(l). Thus Some µ̄2(l) = Some µ̄′2(l). Hence µ̄3 ≥ µ̄′3 and µ̄3 \ {y} ≥ µ̄′3 \ {y}. As y ∉ S2,
µ̄3(y)= v̄2 = v̄ f and µ̄′3(y)= v̄′2 = v̄′f .

Case: T-CASE-H. The transformation derivation is of the form:

T-CASE-H

pc`Γ{e : (τ1 +τ2)H ē}Γ′ H `Γ′, x : τi{e i : τ ē i}Γi i = 1,2 S1 =Γ1 \Γ2 S2 =Γ2 \Γ1

pc`Γ{case e of inl x. e1 inr x. e2 : τ 
pc`Γ{case ē of None. (∀l ∈ updated(ē1, ē2). l := None); None
pc`Γ{case ē of Some x′. case x′ of inl x. let y= ē1 in upgrade(S2); y
pc`Γ{case ē of Some x′. case x′ of inr x. let y= ē2 in upgrade(S1); y}

⊔
Γi \{x}
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From i.h., 〈ē, µ̄〉 ⇓ 〈v̄, µ̄1〉, 〈ē, µ̄′〉 ⇓ 〈v̄′, µ̄′1〉, with v̄ ≥ v̄′ and µ̄1 ≥ µ̄′1. We distinguish three
cases:

Subcase: v̄ = Some v̄1 and v̄′ = Some v̄′1, with v̄1 ≥ v̄′1.
The proof is similar with the proof of the corresponding case in Theorem 35.

Subcase: v̄ = Some v̄1 and v̄′ = None.
ē evaluates in memory µ̄ under rule E-CASE-INR, while in memory µ̄′ it evaluates under

rule E-CASE-INL. We assume v̄1 = inl v1, for the case when v̄1 = inr v1, the proof is analogous.
Thus, we are left to show that, if 〈let y = ē1 in upgrade(S2); y, µ̄∪ {x′ 7→ v1}〉 ⇓ 〈v̄ f , µ̄ f 〉 and

〈∀l ∈ updated(ē1, ē2). l := None; None, µ̄′〉 ⇓ 〈v̄′f , µ̄′f 〉, then v̄ f ≥ v̄′f and µ̄ f ≥ µ̄′f .
But updated(ē1, ē2) = updated(ē1)∪ S2. From Lemma 38 applied to 〈ē1, µ̄1 ∪ {x 7→ v̄1}〉 ⇓

〈v̄2, µ̄2〉 and 〈∀l ∈ updated(ē1).l := None, µ̄′1〉 ⇓ 〈(), µ̄′2〉, we get that µ̄2 \{x}≥ µ̄′2 \{x}.
For all l ∈ S2, Γ′(l)=σL, for some σ. upgrade(S2) means that for all l ∈ S2, µ̄2{l 7→ Some µ̄2(l)}.

∀l ∈ S2.l := None means that for all l ∈ S2, µ̄′2{l 7→ None}. Hence, for all l ∈ S2, µ̄ f (l) = µ̄2{l 7→
µ̄2(l)}(l) ≥ µ̄′2{l 7→ None}(l) = µ̄′f (l). For all l ∉ S2, µ̄ f (l) = µ̄2(l) ≥ µ̄′2(l) = µ̄′f (l). Hence µ̄ f ≥ µ̄′f .
Also, v̄′f = None, hence v̄ f ≥ v̄′f .

Subcase: v̄ = None and v̄′ = None.
v̄ f = v̄′f = None. µ̄1 ≥ µ̄′1, hence µ̄ f ≥ µ̄′f .

Case T-WHILE-L. The transformation derivation is of the form:

Γ(x)= IntL pc`Γ{e : τ ē}Γ

pc`Γ{while x do e : UnitL while x do ē}Γ
T-WHILE-L

As Γ(x)= IntL, it follows that µ̄(x)= µ̄′(x). We distinguish two subcases:

Subcase: µ̄(x) 6= 0 (rule E-WHILE-TRUE)
From i.h., 〈ē, µ̄〉 ⇓ 〈v̄1, µ̄1〉 and 〈ē, µ̄′〉 ⇓ 〈v̄′1, µ̄′1〉 with v̄1 ≥ v̄′1 and µ̄1 ≥ µ̄′1. Also from i.h.,

〈while x do ē, µ̄1〉 ⇓ 〈v̄2, µ̄2〉 and 〈while x do e, µ̄′1〉 ⇓ 〈v̄′2, µ̄′2〉 with v̄2 ≥ v̄′2 and µ̄2 ≥ µ̄′2.
As v̄ f = v̄2 and v̄′f = v̄′2, it follows that v̄ f ≥ v̄′f . Similarly, µ̄ f = µ̄2 and µ̄′f = µ̄′2, hence µ̄ f ≥ µ̄′f .

Subcase: µ̄(x)= 0 (rule E-WHILE-FALSE)
In this case v̄ f = v̄′f = () and µ̄ f = µ̄≥ µ̄′ = µ̄′f .

Case T-WHILE-H. The transformation derivation is of the form:

T-WHILE-H

Γ(x)= IntH H `Γ{e : τ ē}Γ

pc`Γ{while x do e : UnitL 
pc`Γ{while (case x of None. (∀l ∈ updated(ē). l := None; ) 0 Some y. y) do ē}Γ

We distinguish three subcases:

Subcase: µ̄(x)= Some v̄ and µ̄′(x)= Some v̄
The proof is similar with the proof of the corresponding case in Theorem 35.

Subcase: µ̄(x)= Some v̄ and µ̄′(x)= None

• v̄ 6= 0

Follows from Lemma 38.
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• v̄ = 0

v̄ f = () and v̄ f = µ̄. Also v̄′f = (). As µ̄≥ µ̄′ and for all l ∈ updated(ē), µ̄= µ̄ f ≥ None= µ̄′f (l).
Hence µ̄ f ≥ µ̄′f .

Subcase: µ̄(x)= None and µ̄(x)= None

v̄ f = () = v̄′f . As µ̄ ≥ µ̄′ and for all l ∈ updated(ē), µ̄{l 7→ None}(l) ≥ µ̄′{l 7→ None}(l), it follows
that µ̄ f ≥ µ̄′f . ■
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