
Iulia Musard Tamara Andrei

Remote
attacker

*Avatars courtesy of http://costhanzo.com/ 2

http://costhanzo.com/

*Avatars courtesy of http://costhanzo.com/ 3

Remote
attacker

http://costhanzo.com/

*Avatars courtesy of http://costhanzo.com/ 4

Remote
attacker

http://costhanzo.com/

*Avatars courtesy of http://costhanzo.com/ 5

Remote
attacker

http://costhanzo.com/

6

Remote attacker vs. Local attacker

■ writes/knows the program

■ doesn’t know when the

program started

■ measures time in between

public outputs

■ different machines

■ writes/knows the program

■ knows when the program

started

■ measures time in between

instructions

■ same machine

7

Remote attacker vs. Local attacker

■ writes/knows the program

■ doesn’t know when the

program started

■ measures time in between

public outputs

■ different machines

■ writes/knows the program

■ knows when the program

started

■ measures time in between

instructions

■ same machine

weaker than

if h then l = 1

else l = 0

out
L
(l)

out
L
(h)

8

Classical exfiltration
explicit flow implicit flow

Attacker knowledge: h = true if l = 1h

if h then l = 1

else l = 0

out
L
(l)

out
L
(h)

9

Classical exfiltration
explicit flow implicit flow

Attacker knowledge: h = true if l = 1h

... addressed in previous work

...

t =

if h then h1 = h2

out
L
(t)

h = false h = true
t

a

10

Exfiltration via remote timing
time, branch, I/O

Attacker knowledge:

t

h = true if

out
L

out
L

t

out
L

out
L
(1)

if h then h1 = h2

out
L
(2)

11

Exfiltration via remote timing
I/O, branch, I/O

h = false h = true
1

a

Attacker knowledge:

1

h = true if

2
2

1

2

if h then h1 = h2

out
L
(1)

h1 = h2

out
L
(2)

12

Exfiltration via remote timing
cache

h = true h = false
1

a

Attacker knowledge:

1

h = false if

2
2

1

2

t =

if h % 2 = seconds(t) % 2 then h = h

else h = h; ...; h = h

out
L
(1)

13

Exfiltration via remote timing
high delay

Attacker knowledge: h % 2 = seconds() % 2

14

Constant

time

security

■ popular in cryptographic implementations

(e.g. AES, DES, SHA256, RSA)

■ useful for local attacker models

■ too restrictive for remote attacker models

● no high branching

out
L
(1)

out
L
(2)

if h then h1 = h2

if h then h1 = h2

out
L
(1)

15

Constant-time insecure programs
branch, I/O I/O, I/O, branch

out
L
(1)

out
L
(2)

if h then h1 = h2

if h then h1 = h2

out
L
(1)

16

Remote secure* programs
branch, I/O I/O, I/O, branch

*Formal knowledge-based definition in paper

Attacker knowledge: h ∊ {true, false}

17

Patterns
of

remote secure
programs*

one low output after
branching on high
if no previous time
reads OR low outputs

any low outputs before
branching on high;
unrestricted time reads

out
L
...out

L

*wrt timing and assuming explicit & implicit flows handled

out
L

pc=H

pc=L

P = H

out
L
,

out
L
,

out
L
,P = L

P = H

P = highest PC
ever on stack

Dynamic monitor for RSClockwork:

18

P = H

out
L
,

out
L
,

out
L
,P = L

P = H

P = highest PC
ever on stack

Dynamic monitor for RSClockwork:

19

out
L

P = H

out
L
,

out
L
,

out
L
,P = L

P = H

P = highest PC
ever on stack

Dynamic monitor for RSClockwork:

20

out
L

out
L
...out

L

■ basic code

■ exfiltrate GPS location

■ cloud-based

■ suitable for securing IoT apps

■ real-world software

■ no remote timing leaks

■ client side

■ suitable for security testing

21

Case studies JSFlow

■ Timing attacks under remote execution

■ Knowledge-based remote security

■ Clockwork - Permissive yet sound dynamic monitor

■ JSFlow-based implementation

● Case studies with IFTTT and Verificatum

■ Generalization to arbitrary lattices materials

Full paper &

