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Classical exfiltration
explicit flow implicit flow

Attacker knowledge: h = true if l = 1h
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Classical exfiltration
explicit flow implicit flow

Attacker knowledge: h = true if l = 1h

... addressed in previous work
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Exfiltration via remote timing
time, branch, I/O
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Exfiltration via remote timing
I/O, branch, I/O
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Exfiltration via remote timing
cache
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Exfiltration via remote timing
high delay

Attacker knowledge: h % 2 = seconds(  ) % 2
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Constant

time 

security

■ popular in cryptographic implementations

(e.g. AES, DES, SHA256, RSA)

■ useful for local attacker models

■ too restrictive for remote attacker models

● no high branching
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Constant-time insecure programs
branch, I/O I/O, I/O, branch
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Remote secure* programs
branch, I/O I/O, I/O, branch

*Formal knowledge-based definition in paper

Attacker knowledge: h ∊ {true, false}
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Patterns 
of 

remote secure 
programs*

one low output after 
branching on high
if no previous time 
reads OR low outputs

any low outputs before 
branching on high; 
unrestricted time reads

out
L
...out

L

*wrt timing and assuming explicit & implicit flows handled
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■ basic code 

■ exfiltrate GPS location 

■ cloud-based

■ suitable for securing IoT apps

■ real-world software

■ no remote timing leaks

■ client side

■ suitable for security testing

21

Case studies JSFlow



■ Timing attacks under remote execution

■ Knowledge-based remote security 

■ Clockwork - Permissive yet sound dynamic monitor

■ JSFlow-based implementation

● Case studies with IFTTT and Verificatum

■ Generalization to arbitrary lattices materials

Full paper &


